A253396 Number of (n+1)X(7+1) 0..1 arrays with every 2X2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.
704, 391, 520, 823, 1269, 1855, 2726, 3810, 5311, 7163, 9569, 12493, 16140, 20493, 25773, 31978, 39346, 47891, 57867, 69304, 82472, 97417, 114425, 133558, 155118, 179183, 206071, 235876, 268932, 305349, 345477, 389442, 437610, 490123, 547363
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0..0..0..0..0..1....1..1..1..1..1..1..0..1....1..1..1..0..0..0..0..1 ..0..0..0..0..0..0..1..0....1..1..1..1..1..1..0..0....1..1..1..1..1..1..1..1 ..0..0..0..0..0..0..1..0....1..1..1..1..1..1..1..1....1..0..0..0..0..0..0..0 ..0..0..0..0..0..0..1..0....1..1..1..1..1..0..0..0....1..1..1..1..1..1..1..1 ..0..0..0..0..0..0..1..0....1..1..1..1..1..1..1..1....0..0..0..0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6) for n>18
Empirical for n mod 2 = 0: a(n) = (1/3)*n^4 - (1/3)*n^3 + (337/6)*n^2 - (1423/6)*n + 914 for n>12
Empirical for n mod 2 = 1: a(n) = (1/3)*n^4 - (1/3)*n^3 + (337/6)*n^2 - (1423/6)*n + 943 for n>12
Comments