cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253396 Number of (n+1)X(7+1) 0..1 arrays with every 2X2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.

Original entry on oeis.org

704, 391, 520, 823, 1269, 1855, 2726, 3810, 5311, 7163, 9569, 12493, 16140, 20493, 25773, 31978, 39346, 47891, 57867, 69304, 82472, 97417, 114425, 133558, 155118, 179183, 206071, 235876, 268932, 305349, 345477, 389442, 437610, 490123, 547363
Offset: 1

Views

Author

R. H. Hardin, Dec 31 2014

Keywords

Comments

Column 7 of A253397

Examples

			Some solutions for n=4
..0..0..0..0..0..0..0..1....1..1..1..1..1..1..0..1....1..1..1..0..0..0..0..1
..0..0..0..0..0..0..1..0....1..1..1..1..1..1..0..0....1..1..1..1..1..1..1..1
..0..0..0..0..0..0..1..0....1..1..1..1..1..1..1..1....1..0..0..0..0..0..0..0
..0..0..0..0..0..0..1..0....1..1..1..1..1..0..0..0....1..1..1..1..1..1..1..1
..0..0..0..0..0..0..1..0....1..1..1..1..1..1..1..1....0..0..0..0..0..0..0..0
		

Formula

Empirical: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6) for n>18
Empirical for n mod 2 = 0: a(n) = (1/3)*n^4 - (1/3)*n^3 + (337/6)*n^2 - (1423/6)*n + 914 for n>12
Empirical for n mod 2 = 1: a(n) = (1/3)*n^4 - (1/3)*n^3 + (337/6)*n^2 - (1423/6)*n + 943 for n>12