cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A253390 Number of (n+1)X(n+1) 0..1 arrays with every 2X2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.

Original entry on oeis.org

16, 102, 174, 346, 666, 1318, 2726, 5396, 11392, 22634, 47926, 95464, 201644, 402272, 846688, 1690724, 3546388, 7086130, 14818262, 29621624, 61778428, 123532896, 257035176, 514085752, 1067445536, 2135305688, 4425565336, 8853923848
Offset: 1

Views

Author

R. H. Hardin, Dec 31 2014

Keywords

Comments

Diagonal of A253397

Examples

			Some solutions for n=4
..1..0..0..1..1....1..0..1..0..1....0..0..1..0..1....0..1..0..1..1
..0..0..0..1..0....1..0..1..0..1....0..0..1..0..1....1..1..0..1..0
..1..1..0..1..0....1..0..1..0..1....0..0..1..0..1....0..1..0..1..0
..0..1..0..1..0....1..0..1..0..1....1..0..1..0..1....0..1..0..1..0
..0..1..0..1..0....1..0..1..0..1....0..0..1..0..1....0..1..0..1..0
		

A253391 Number of (n+1) X (2+1) 0..1 arrays with every 2 X 2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.

Original entry on oeis.org

44, 102, 143, 197, 250, 320, 391, 477, 564, 666, 769, 887, 1006, 1140, 1275, 1425, 1576, 1742, 1909, 2091, 2274, 2472, 2671, 2885, 3100, 3330, 3561, 3807, 4054, 4316, 4579, 4857, 5136, 5430, 5725, 6035, 6346, 6672, 6999, 7341, 7684, 8042, 8401, 8775, 9150
Offset: 1

Views

Author

R. H. Hardin, Dec 31 2014

Keywords

Examples

			Some solutions for n=4:
..1..1..1....1..1..1....0..1..1....1..1..1....1..1..1....0..1..0....1..0..1
..1..1..1....1..1..0....0..0..0....1..1..0....0..1..0....1..1..0....0..0..0
..1..1..0....1..1..1....0..0..1....0..1..0....0..1..0....1..1..0....0..1..0
..0..1..0....0..0..0....0..0..1....0..1..0....0..1..0....1..1..1....0..1..0
..0..1..0....0..1..1....0..0..1....0..1..0....0..1..0....1..0..0....0..1..0
		

Crossrefs

Column 2 of A253397.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>8.
Empirical for n mod 2 = 0: a(n) = 4*n^2 + (45/2)*n + 41 for n>4.
Empirical for n mod 2 = 1: a(n) = 4*n^2 + (45/2)*n + (75/2) for n>4.
Empirical g.f.: x*(44 + 14*x - 61*x^2 - x^3 + 16*x^4 + 4*x^5 + 2*x^6 - 2*x^7) / ((1 - x)^3*(1 + x)). - Colin Barker, Dec 11 2018

A253392 Number of (n+1) X (3+1) 0..1 arrays with every 2 X 2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.

Original entry on oeis.org

96, 143, 174, 246, 316, 419, 520, 651, 780, 939, 1096, 1283, 1468, 1683, 1896, 2139, 2380, 2651, 2920, 3219, 3516, 3843, 4168, 4523, 4876, 5259, 5640, 6051, 6460, 6899, 7336, 7803, 8268, 8763, 9256, 9779, 10300, 10851, 11400, 11979, 12556, 13163, 13768
Offset: 1

Views

Author

R. H. Hardin, Dec 31 2014

Keywords

Examples

			Some solutions for n=4:
..0..0..0..0....0..0..0..0....1..1..0..0....1..0..0..1....0..0..0..1
..0..0..0..0....0..0..0..0....1..1..1..1....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..1..0....1..0..0..0....1..1..1..1....0..0..0..0
..0..0..0..0....0..0..1..0....1..1..1..1....0..0..0..0....0..0..1..0
..1..1..1..1....1..0..1..0....0..0..0..0....1..1..1..1....0..0..1..0
		

Crossrefs

Column 3 of A253397.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>8.
Empirical for n mod 2 = 0: a(n) = 7*n^2 + 18*n + 59 for n>4.
Empirical for n mod 2 = 1: a(n) = 7*n^2 + 18*n + 51 for n>4.
Empirical g.f.: x*(96 - 49*x - 112*x^2 + 90*x^3 + 14*x^4 - 8*x^5 - 3*x^7) / ((1 - x)^3*(1 + x)). - Colin Barker, Dec 11 2018

A253393 Number of (n+1) X (4+1) 0..1 arrays with every 2 X 2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.

Original entry on oeis.org

180, 197, 246, 346, 465, 632, 823, 1071, 1351, 1695, 2079, 2535, 3039, 3623, 4263, 4991, 5783, 6671, 7631, 8695, 9839, 11095, 12439, 13903, 15463, 17151, 18943, 20871, 22911, 25095, 27399, 29855, 32439, 35183, 38063, 41111, 44303, 47671, 51191, 54895
Offset: 1

Views

Author

R. H. Hardin, Dec 31 2014

Keywords

Examples

			Some solutions for n=4:
..0..0..0..0..0....1..1..1..1..1....1..1..1..1..1....1..1..1..1..1
..0..0..0..0..0....1..1..1..1..1....1..1..1..1..1....1..1..1..1..1
..0..0..0..0..0....1..1..1..1..0....1..1..1..1..1....1..1..1..0..0
..0..0..0..1..0....1..1..1..1..1....1..1..1..1..1....1..1..1..1..1
..1..1..0..1..0....0..1..0..0..0....0..1..1..1..0....1..0..0..0..0
		

Crossrefs

Column 4 of A253397.

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>11.
Empirical for n mod 2 = 0: a(n) = (2/3)*n^3 + 7*n^2 + (70/3)*n + 95 for n>6.
Empirical for n mod 2 = 1: a(n) = (2/3)*n^3 + 7*n^2 + (70/3)*n + 88 for n>6.
Empirical g.f.: x*(180 - 343*x + 15*x^2 + 362*x^3 - 227*x^4 + 10*x^5 + 8*x^6 + 4*x^7 - x^8 - x^9 + x^10) / ((1 - x)^4*(1 + x)). - Colin Barker, Dec 11 2018

A253394 Number of (n+1) X (5+1) 0..1 arrays with every 2 X 2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.

Original entry on oeis.org

304, 250, 316, 465, 666, 932, 1269, 1693, 2201, 2814, 3527, 4360, 5309, 6394, 7611, 8980, 10497, 12182, 14031, 16064, 18277, 20690, 23299, 26124, 29161, 32430, 35927, 39672, 43661, 47914, 52427, 57220, 62289, 67654, 73311, 79280, 85557, 92162, 99091
Offset: 1

Views

Author

R. H. Hardin, Dec 31 2014

Keywords

Examples

			Some solutions for n=4:
..0..0..0..0..0..1....0..0..0..0..1..1....1..1..1..1..1..1....1..1..0..1..0..1
..0..0..0..0..0..0....0..0..0..0..0..0....1..1..1..1..0..0....1..1..0..1..0..1
..0..0..0..0..0..0....0..0..0..0..0..1....1..1..1..1..1..1....1..1..0..1..0..1
..0..0..0..0..1..0....0..0..0..0..0..1....1..1..0..0..0..0....1..1..0..1..0..1
..1..1..1..0..1..0....1..1..1..1..0..1....1..1..1..1..1..1....1..1..0..1..0..1
		

Crossrefs

Column 5 of A253397.

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>13.
Empirical for n mod 2 = 0: a(n) = (4/3)*n^3 + 13*n^2 + (5/3)*n + 164 for n>8.
Empirical for n mod 2 = 1: a(n) = (4/3)*n^3 + 13*n^2 + (5/3)*n + 161 for n>8.
Empirical g.f.: x*(304 - 662*x + 174*x^2 + 625*x^3 - 509*x^4 + 50*x^5 + 37*x^6 + 3*x^7 - 9*x^8 + 5*x^9 - 2*x^10 - x^11 + x^12) / ((1 - x)^4*(1 + x)). - Colin Barker, Dec 12 2018

A253395 Number of (n+1) X (6+1) 0..1 arrays with every 2 X 2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.

Original entry on oeis.org

476, 320, 419, 632, 932, 1318, 1855, 2528, 3408, 4498, 5864, 7521, 9542, 11949, 14824, 18197, 22158, 26745, 32056, 38137, 45094, 52981, 61912, 71949, 83214, 95777, 109768, 125265, 142406, 161277, 182024, 204741, 229582, 256649, 286104, 318057
Offset: 1

Views

Author

R. H. Hardin, Dec 31 2014

Keywords

Examples

			Some solutions for n=4:
..0..1..0..1..0..1..1....1..1..1..0..0..0..1....1..1..1..1..1..1..1
..0..1..0..1..0..1..0....1..1..1..1..1..1..1....1..1..1..0..0..0..0
..0..1..0..1..0..1..0....1..1..0..0..0..0..0....1..1..1..1..1..1..1
..0..1..0..1..0..1..0....1..1..1..1..1..1..1....1..0..0..0..0..0..0
..0..1..0..1..0..1..0....0..0..0..0..0..0..0....0..0..1..1..1..1..1
		

Crossrefs

Column 6 of A253397.

Formula

Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n>16.
Empirical for n mod 2 = 0: a(n) = (1/6)*n^4 + (185/6)*n^2 - 61*n + 357 for n>10.
Empirical for n mod 2 = 1: a(n) = (1/6)*n^4 + (185/6)*n^2 - 61*n + 364 for n>10.
Empirical g.f.: x*(476 - 1584*x + 1519*x^2 + 556*x^3 - 1881*x^4 + 1054*x^5 - 48*x^6 - 106*x^7 + 20*x^8 + 12*x^9 - 23*x^10 + 17*x^11 - 5*x^12 + 2*x^14 - x^15) / ((1 - x)^5*(1 + x)). - Colin Barker, Dec 12 2018

A253396 Number of (n+1)X(7+1) 0..1 arrays with every 2X2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.

Original entry on oeis.org

704, 391, 520, 823, 1269, 1855, 2726, 3810, 5311, 7163, 9569, 12493, 16140, 20493, 25773, 31978, 39346, 47891, 57867, 69304, 82472, 97417, 114425, 133558, 155118, 179183, 206071, 235876, 268932, 305349, 345477, 389442, 437610, 490123, 547363
Offset: 1

Views

Author

R. H. Hardin, Dec 31 2014

Keywords

Comments

Column 7 of A253397

Examples

			Some solutions for n=4
..0..0..0..0..0..0..0..1....1..1..1..1..1..1..0..1....1..1..1..0..0..0..0..1
..0..0..0..0..0..0..1..0....1..1..1..1..1..1..0..0....1..1..1..1..1..1..1..1
..0..0..0..0..0..0..1..0....1..1..1..1..1..1..1..1....1..0..0..0..0..0..0..0
..0..0..0..0..0..0..1..0....1..1..1..1..1..0..0..0....1..1..1..1..1..1..1..1
..0..0..0..0..0..0..1..0....1..1..1..1..1..1..1..1....0..0..0..0..0..0..0..0
		

Formula

Empirical: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6) for n>18
Empirical for n mod 2 = 0: a(n) = (1/3)*n^4 - (1/3)*n^3 + (337/6)*n^2 - (1423/6)*n + 914 for n>12
Empirical for n mod 2 = 1: a(n) = (1/3)*n^4 - (1/3)*n^3 + (337/6)*n^2 - (1423/6)*n + 943 for n>12
Showing 1-7 of 7 results.