cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253410 Indices of centered pentagonal numbers (A005891) which are also centered octagonal numbers (A016754).

This page as a plain text file.
%I A253410 #15 Jul 12 2021 14:32:53
%S A253410 1,96,817,137712,1177393,198579888,1697799169,286352060064,
%T A253410 2448225223585,412919472031680,3530339074609681,595429592317621776,
%U A253410 5090746497361935697,858609059202538568592,7340852918856836664673,1238113667940468298287168,10585504818245061108522049
%N A253410 Indices of centered pentagonal numbers (A005891) which are also centered octagonal numbers (A016754).
%C A253410 Also positive integers x in the solutions to 5*x^2 - 8*y^2 - 5*x + 8*y = 0, the corresponding values of y being A253411.
%H A253410 Colin Barker, <a href="/A253410/b253410.txt">Table of n, a(n) for n = 1..633</a>
%H A253410 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1442,-1442,-1,1).
%F A253410 a(n) = a(n-1) + 1442*a(n-2) - 1442*a(n-3) - a(n-4) + a(n-5).
%F A253410 G.f.: x*(95*x^3 + 721*x^2 - 95*x - 1) / ((x-1)*(x^2 - 38*x + 1)*(x^2 + 38*x + 1)).
%e A253410 96 is in the sequence because the 96th centered pentagonal number is 22801, which is also the 76th centered octagonal number.
%t A253410 LinearRecurrence[{1,1442,-1442,-1,1},{1,96,817,137712,1177393},20] (* _Harvey P. Dale_, Jul 12 2021 *)
%o A253410 (PARI) Vec(x*(95*x^3+721*x^2-95*x-1)/((x-1)*(x^2-38*x+1)*(x^2+38*x+1)) + O(x^100))
%Y A253410 Cf. A005891, A016754, A253411, A253579.
%K A253410 nonn,easy
%O A253410 1,2
%A A253410 _Colin Barker_, Dec 31 2014