cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253411 Indices of centered octagonal numbers (A016754) which are also centered pentagonal numbers (A005891).

This page as a plain text file.
%I A253411 #13 Feb 04 2016 16:18:02
%S A253411 1,76,646,108871,930811,156991186,1342228096,226381180621,
%T A253411 1935491982901,326441505463576,2790978097114426,470728424497295251,
%U A253411 4024588480547018671,678790061683594287646,5803453797970703808436,978814798219318465489561,8368576352085274344745321
%N A253411 Indices of centered octagonal numbers (A016754) which are also centered pentagonal numbers (A005891).
%C A253411 Also positive integers y in the solutions to 5*x^2 - 8*y^2 - 5*x + 8*y = 0, the corresponding values of x being A253410.
%H A253411 Colin Barker, <a href="/A253411/b253411.txt">Table of n, a(n) for n = 1..633</a>
%H A253411 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1442,-1442,-1,1).
%F A253411 a(n) = a(n-1) + 1442*a(n-2) - 1442*a(n-3) - a(n-4) + a(n-5).
%F A253411 G.f.: -x*(x^4 + 75*x^3 - 872*x^2 + 75*x + 1) / ((x-1)*(x^2 - 38*x + 1)*(x^2 + 38*x + 1)).
%e A253411 76 is in the sequence because the 76th centered octagonal number is 22801, which is also the 96th centered pentagonal number.
%t A253411 LinearRecurrence[{1,1442,-1442,-1,1},{1,76,646,108871,930811},20] (* _Harvey P. Dale_, Feb 04 2016 *)
%o A253411 (PARI) Vec(-x*(x^4+75*x^3-872*x^2+75*x+1)/((x-1)*(x^2-38*x+1)*(x^2+38*x+1)) + O(x^100))
%Y A253411 Cf. A005891, A016754, A253410, A253579.
%K A253411 nonn,easy
%O A253411 1,2
%A A253411 _Colin Barker_, Dec 31 2014