This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253415 #12 Jan 25 2022 15:57:01 %S A253415 2,4,5,5,5,5,5,5,7,7,7,7,7,7,7,7,7,7,7,14,14,14,14,14,14,14,14,14,14, %T A253415 14,14,14,14,14,14,14,14,19,19,19,19,19,19,19,19,19,19,19,19,22,22,22, %U A253415 22,22,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31 %N A253415 Smallest missing number within the first n terms in A095258. %H A253415 Michael De Vlieger, <a href="/A253415/b253415.txt">Table of n, a(n) for n = 2..10000</a> (terms 2..797 from Reinhard Zumkeller) %t A253415 c[_] = 0; c[1] = j = 1; u = 2; s = 3; Reap[Do[d = Divisors[s]; k = 1; While[c[d[[k]]] > 0, k++]; Set[k, d[[k]]]; Set[c[k], i]; If[k == u, While[c[u] > 0, u++]]; Sow[u]; j = k; s += k, {i, 2, 2^12}]][[-1, -1]] (* _Michael De Vlieger_, Jan 23 2022 *) %o A253415 (Haskell) %o A253415 import Data.List (delete) %o A253415 a253415 n = a253415_list !! (n-2) %o A253415 a253415_list = f [2..] 1 where %o A253415 f xs z = g xs where %o A253415 g (y:ys) = if mod z' y > 0 then g ys else x : f xs' (z + y) %o A253415 where xs'@(x:_) = delete y xs %o A253415 z' = z + 2 %o A253415 -- _Reinhard Zumkeller_, Dec 31 2014 %o A253415 (Python) %o A253415 from itertools import islice %o A253415 from sympy import divisors %o A253415 def A253415_gen(): # generator of terms, first term is a(2) %o A253415 bset, m, s = {1}, 2, 3 %o A253415 while True: %o A253415 for d in divisors(s): %o A253415 if d not in bset: %o A253415 bset.add(d) %o A253415 while m in bset: %o A253415 m += 1 %o A253415 yield m %o A253415 s += d %o A253415 break %o A253415 A253415_list = list(islice(A253415_gen(),30)) # _Chai Wah Wu_, Jan 25 2022 %Y A253415 Cf. A095258, A095259, A253425 (run lengths). %K A253415 nonn %O A253415 2,1 %A A253415 _Reinhard Zumkeller_, Dec 31 2014