This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253425 #17 Jan 25 2022 15:33:53 %S A253425 1,1,6,11,18,12,5,22,91,143,1,93,370,182,20,20,315,332,973,157,1223, %T A253425 1807,325,4044,7412,11211,4600,2176,14848,4659,3123,10852,1678,20862, %U A253425 3348 %N A253425 Lengths of runs of identical terms in A253415. %t A253425 c[_] = 0; c[1] = j = 1; u = 2; s = 3; Most@ Tally[#][[All, -1]] &@ Reap[Do[d = Divisors[s]; k = 1; While[c[d[[k]]] > 0, k++]; Set[k, d[[k]]]; Set[c[k], i]; If[k == u, While[c[u] > 0, u++]]; Sow[u]; j = k; s += k, {i, 2, 2^12}]][[-1, -1]] (* _Michael De Vlieger_, Jan 23 2022 *) %o A253425 (Haskell) %o A253425 import Data.List (group) %o A253425 a253425 n = a253425_list !! (n-1) %o A253425 a253425_list = map length $ group a253415_list %o A253425 (Python) %o A253425 from itertools import islice %o A253425 from sympy import divisors %o A253425 def A253425_gen(): # generator of terms %o A253425 bset, l, m, s = {1}, 0, 2, 3 %o A253425 while True: %o A253425 for d in divisors(s): %o A253425 if d not in bset: %o A253425 bset.add(d) %o A253425 if m in bset: %o A253425 yield l %o A253425 l = 1 %o A253425 while m in bset: %o A253425 m += 1 %o A253425 else: %o A253425 l += 1 %o A253425 s += d %o A253425 break %o A253425 A253425_list = list(islice(A253425_gen(),20)) # _Chai Wah Wu_, Jan 25 2022 %Y A253425 Cf. A253415, A095258. %K A253425 nonn,more %O A253425 1,3 %A A253425 _Reinhard Zumkeller_, Dec 31 2014 %E A253425 a(14)-a(35) from _Michael De Vlieger_, Jan 23 2022