cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253446 Indices of centered heptagonal numbers (A069099) which are also centered octagonal numbers (A016754).

This page as a plain text file.
%I A253446 #15 Oct 04 2023 15:21:10
%S A253446 1,16,465,13920,417121,12499696,374573745,11224712640,336366805441,
%T A253446 10079779450576,302057016711825,9051630721904160,271246864640412961,
%U A253446 8128354308490484656,243579382390074126705,7299253117393733316480,218734014139421925367681
%N A253446 Indices of centered heptagonal numbers (A069099) which are also centered octagonal numbers (A016754).
%C A253446 Also positive integers x in the solutions to 7*x^2 - 8*y^2 - 7*x + 8*y = 0, the corresponding values of y being A253447.
%H A253446 Colin Barker, <a href="/A253446/b253446.txt">Table of n, a(n) for n = 1..678</a>
%H A253446 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (31,-31,1).
%F A253446 a(n) = 31*a(n-1)-31*a(n-2)+a(n-3).
%F A253446 G.f.: x*(15*x-1) / ((x-1)*(x^2-30*x+1)).
%F A253446 a(n) = sqrt((-2-(15-4*sqrt(14))^n-(15+4*sqrt(14))^n)*(2-(15-4*sqrt(14))^(1+n)-(15+4*sqrt(14))^(1+n)))/(4*sqrt(7)).  - _Gerry Martens_, Jun 04 2015
%e A253446 16 is in the sequence because the 16th centered heptagonal number is 841, which is also the 15th centered octagonal number.
%t A253446 LinearRecurrence[{31,-31,1},{1,16,465},20] (* _Harvey P. Dale_, Oct 04 2023 *)
%o A253446 (PARI) Vec(x*(15*x-1)/((x-1)*(x^2-30*x+1)) + O(x^100))
%Y A253446 Cf. A016754, A069099, A253447, A253514.
%K A253446 nonn,easy
%O A253446 1,2
%A A253446 _Colin Barker_, Jan 01 2015