cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253458 Indices of centered heptagonal numbers (A069099) which are also centered hexagonal numbers (A003215).

This page as a plain text file.
%I A253458 #20 Oct 13 2022 15:47:05
%S A253458 1,13,325,8425,218713,5678101,147411901,3827031313,99355402225,
%T A253458 2579413426525,66965393687413,1738520822446201,45134575989913801,
%U A253458 1171760454915312613,30420637251808214125,789764808092098254625,20503464373142746406113,532300308893619308304301
%N A253458 Indices of centered heptagonal numbers (A069099) which are also centered hexagonal numbers (A003215).
%C A253458 Also positive integers y in the solutions to 6*x^2 - 7*y^2 - 6*x + 7*y = 0, the corresponding values of x being A253457.
%H A253458 Colin Barker, <a href="/A253458/b253458.txt">Table of n, a(n) for n = 1..708</a>
%H A253458 Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2016volume16/FG2016volume16.pdf#page=423">Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences</a>, Forum Geometricorum, Volume 16 (2016) 419-427.
%H A253458 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (27,-27,1).
%F A253458 a(n) = 27*a(n-1)-27*a(n-2)+a(n-3).
%F A253458 G.f.: -x*(x^2-14*x+1) / ((x-1)*(x^2-26*x+1)).
%F A253458 a(n) = 1/2+(13+2*sqrt(42))^(-n)*(7+sqrt(42)-(-7+sqrt(42))*(13+2*sqrt(42))^(2*n))/28. - _Colin Barker_, Mar 03 2016
%e A253458 13 is in the sequence because the 13th centered heptagonal number is 547, which is also the 14th centered hexagonal number.
%t A253458 LinearRecurrence[{27,-27,1},{1,13,325},20] (* _Harvey P. Dale_, Oct 13 2022 *)
%o A253458 (PARI) Vec(-x*(x^2-14*x+1)/((x-1)*(x^2-26*x+1)) + O(x^100))
%Y A253458 Cf. A003215, A069099, A253457, A253546.
%K A253458 nonn,easy
%O A253458 1,2
%A A253458 _Colin Barker_, Jan 01 2015