cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253475 Indices of centered square numbers (A001844) which are also centered hexagonal numbers (A003215).

This page as a plain text file.
%I A253475 #26 May 30 2025 10:10:30
%S A253475 1,6,55,540,5341,52866,523315,5180280,51279481,507614526,5024865775,
%T A253475 49741043220,492385566421,4874114620986,48248760643435,
%U A253475 477613491813360,4727886157490161,46801248083088246,463284594673392295,4586044698650834700,45397162391834954701
%N A253475 Indices of centered square numbers (A001844) which are also centered hexagonal numbers (A003215).
%C A253475 Also positive integers x in the solutions to 4*x^2 - 6*y^2 - 4*x + 6*y = 0, the corresponding values of y being A054318.
%C A253475 Also indices of centered hexagonal numbers (A003215) which are also hexagonal numbers (A000384).
%C A253475 Also indices of terms in sequence A193218 which are the square root of a sum of 5th powers (A000539). - _Daniel Poveda Parrilla_, Jun 10 2017
%H A253475 Colin Barker, <a href="/A253475/b253475.txt">Table of n, a(n) for n = 1..1000</a>
%H A253475 Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
%H A253475 Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_1.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
%H A253475 Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_2.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
%H A253475 Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_3.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
%H A253475 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-11,1).
%F A253475 a(n) = 11*a(n-1)-11*a(n-2)+a(n-3).
%F A253475 G.f.: x*(5*x-1) / ((x-1)*(x^2-10*x+1)).
%F A253475 a(n) = sqrt((-2-(5-2*sqrt(6))^n-(5+2*sqrt(6))^n)*(2-(5-2*sqrt(6))^(1+n)-(5+2*sqrt(6))^(1+n)))/(4*sqrt(2)). - _Gerry Martens_, Jun 04 2015
%F A253475 2*a(n) = 1+A054320(n-1). - _R. J. Mathar_, Feb 07 2022
%e A253475 6 is in the sequence because the 6th centered square number is 61, which is also the 5th centered hexagonal number.
%t A253475 LinearRecurrence[{11, -11, 1}, {1, 6, 55}, 25] (* _Paolo Xausa_, May 30 2025 *)
%o A253475 (PARI) Vec(x*(5*x-1)/((x-1)*(x^2-10*x+1)) + O(x^100))
%Y A253475 Cf. A000384, A000539, A001844, A003215, A054318, A193218, A253175.
%K A253475 nonn,easy
%O A253475 1,2
%A A253475 _Colin Barker_, Jan 02 2015