cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253477 Indices of centered heptagonal numbers (A069099) which are also centered triangular numbers (A005448).

This page as a plain text file.
%I A253477 #11 Aug 13 2018 16:37:42
%S A253477 1,10,46,1045,5005,114886,550450,12636361,60544441,1389884770,
%T A253477 6659338006,152874688285,732466636165,16814825826526,80564670640090,
%U A253477 1849477966229521,8861381303773681,203425761459420730,974671378744464766,22374984282570050725
%N A253477 Indices of centered heptagonal numbers (A069099) which are also centered triangular numbers (A005448).
%C A253477 Also positive integers y in the solutions to 3*x^2 - 7*y^2 - 3*x + 7*y = 0, the corresponding values of x being A253476.
%H A253477 Colin Barker, <a href="/A253477/b253477.txt">Table of n, a(n) for n = 1..980</a>
%H A253477 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,110,-110,-1,1).
%F A253477 a(n) = a(n-1)+110*a(n-2)-110*a(n-3)-a(n-4)+a(n-5).
%F A253477 G.f.: -x*(x^4+9*x^3-74*x^2+9*x+1) / ((x-1)*(x^4-110*x^2+1)).
%e A253477 10 is in the sequence because the 10th centered heptagonal number is 316, which is also the 15th centered triangular number.
%t A253477 LinearRecurrence[{1,110,-110,-1,1},{1,10,46,1045,5005},30] (* _Harvey P. Dale_, Aug 13 2018 *)
%o A253477 (PARI) Vec(-x*(x^4+9*x^3-74*x^2+9*x+1)/((x-1)*(x^4-110*x^2+1)) + O(x^100))
%Y A253477 Cf. A005448, A069099, A253476, A253689.
%K A253477 nonn,easy
%O A253477 1,2
%A A253477 _Colin Barker_, Jan 02 2015