This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253477 #11 Aug 13 2018 16:37:42 %S A253477 1,10,46,1045,5005,114886,550450,12636361,60544441,1389884770, %T A253477 6659338006,152874688285,732466636165,16814825826526,80564670640090, %U A253477 1849477966229521,8861381303773681,203425761459420730,974671378744464766,22374984282570050725 %N A253477 Indices of centered heptagonal numbers (A069099) which are also centered triangular numbers (A005448). %C A253477 Also positive integers y in the solutions to 3*x^2 - 7*y^2 - 3*x + 7*y = 0, the corresponding values of x being A253476. %H A253477 Colin Barker, <a href="/A253477/b253477.txt">Table of n, a(n) for n = 1..980</a> %H A253477 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,110,-110,-1,1). %F A253477 a(n) = a(n-1)+110*a(n-2)-110*a(n-3)-a(n-4)+a(n-5). %F A253477 G.f.: -x*(x^4+9*x^3-74*x^2+9*x+1) / ((x-1)*(x^4-110*x^2+1)). %e A253477 10 is in the sequence because the 10th centered heptagonal number is 316, which is also the 15th centered triangular number. %t A253477 LinearRecurrence[{1,110,-110,-1,1},{1,10,46,1045,5005},30] (* _Harvey P. Dale_, Aug 13 2018 *) %o A253477 (PARI) Vec(-x*(x^4+9*x^3-74*x^2+9*x+1)/((x-1)*(x^4-110*x^2+1)) + O(x^100)) %Y A253477 Cf. A005448, A069099, A253476, A253689. %K A253477 nonn,easy %O A253477 1,2 %A A253477 _Colin Barker_, Jan 02 2015