This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253487 #21 Jun 11 2025 17:51:40 %S A253487 2,16,90,448,2100,9504,42042,183040,787644,3359200,14226212,59907456, %T A253487 251100200,1048380480,4362680250,18103127040,74934688620,309509877600, %U A253487 1275964023180,5251296336000,21579247511640,88555121603520,362957071241700,1485969577717248 %N A253487 Number of lattice paths of 2*n+2 steps in the first quadrant from (0,0) to (n,n). %H A253487 Robert Israel, <a href="/A253487/b253487.txt">Table of n, a(n) for n = 0..1491</a> %H A253487 Liam Ayres, Evan Bialo, Aidan Cook, Alwin Chen, Matteus Froese, Erica Liu, Maryam Mohammadi Yekta, Oliver Pechenik, and Benjamin Wong, <a href="https://arxiv.org/abs/2506.03116">An exceptional equinumerosity of lattice paths and Young tableaux</a>, arXiv:2506.03116 [math.CO], 2025. See p. 6. %H A253487 Richard K. Guy, Christian Krattenthaler and Bruce E. Sagan, <a href="http://www.mat.univie.ac.at/~kratt/artikel/paths.html">Lattice paths, reflections, & dimension-changing bijections</a>, Ars Combin. 34 (1992), 3-15. %H A253487 Mathematics Stack Exchange, <a href="http://math.stackexchange.com/questions/870446/number-of-paths-from-0-0-to-n-k-where-all-four-directions-are-allowed-u/870456#comment2216962_870456">Number of paths from (0,0) to (n,k) where all four directions are allowed, using a specific number of steps</a>. %F A253487 a(n) = (4*n+4)*(2*n+1)*binomial(2*n, n)/(n+2). %F A253487 a(n) = 2*(n+5)*(n+1)*a(n-1)/(n*(n+2)) + (8*n-4)*a(n-2)/(n+2). %F A253487 G.f.: 1/x^2 - (1-6*x+4*x^2)/((1-4*x)^(3/2)*x^2). %F A253487 E.g.f.: 16*x*exp(2*x)*I_0(2*x) + (2-4*x+16*x^2)*exp(2*x)*I_1(2*x)/x where I_0, I_1 are modified Bessel functions. %F A253487 a(n) = 2*A110609(n+1). - _Vincenzo Librandi_, Jan 09 2015 %e A253487 For n = 0 the a(0) = 2 paths of length 2 from (0,0) to (0,0) are (0,0)->(1,0)->(0,0) and (0,0)->(0,1)->(0,0). %p A253487 seq((4*n+4)*(2*n+1)*binomial(2*n, n)/(n+2), n=0..30); %t A253487 Table[(4 n + 4) (2 n + 1) Binomial[2 n, n] / (n + 2), {n, 0, 25}] (* or *) CoefficientList[Series[1 / x^2 - (1 - 6 x + 4 x^2) / ((1 - 4 x)^(3/2) x^2), {x, 0, 30}], x] (* _Vincenzo Librandi_, Jan 09 2015 *) %o A253487 (Magma) [(4*n+4)*(2*n+1)*Binomial(2*n, n)/(n+2): n in [0..25]]; // _Vincenzo Librandi_, Jan 09 2015 %Y A253487 Cf. A110609. %K A253487 nonn %O A253487 0,1 %A A253487 _Robert Israel_, Jan 02 2015