cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253514 Centered heptagonal numbers (A069099) which are also centered octagonal numbers (A016754).

This page as a plain text file.
%I A253514 #16 May 13 2025 00:59:37
%S A253514 1,841,755161,678133681,608963290321,546848356574521,
%T A253514 491069215240629481,440979608437728699361,395999197307865131396641,
%U A253514 355606838202854450265484201,319334544706965988473273415801,286762065540017254794549261905041
%N A253514 Centered heptagonal numbers (A069099) which are also centered octagonal numbers (A016754).
%H A253514 Colin Barker, <a href="/A253514/b253514.txt">Table of n, a(n) for n = 1..339</a>
%H A253514 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (899,-899,1).
%F A253514 a(n) = 899*a(n-1)-899*a(n-2)+a(n-3).
%F A253514 G.f.: -x*(x^2-58*x+1) / ((x-1)*(x^2-898*x+1)).
%F A253514 From _Peter Bala_, Apr 15 2025; (Start)
%F A253514 a(n) = (1/64)*(-4 + sqrt(14))^2*(15 + 4*sqrt(14) + (449 + 120*sqrt(14))^n)^2 *(449 + 120*sqrt(14))^(-n).
%F A253514 a(-n) = a(n+1).
%F A253514 a(n) = (1/16) * (1 - T(2*n+1, -15)), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. Cf. A001110.
%F A253514 a(n) = A157877(n)^2 = 1 + 7*A157879(n).
%F A253514 a(2) divides a(3*n+2); a(3) divides a(5*n+3); a(4) divides a(7*n+4); a(5) divides a(9*n+5). In general, a(k) divides a((2*k-1)*n + k). (End)
%e A253514 841 is in the sequence because it is the 16th centered heptagonal number and the 15th centered octagonal number.
%o A253514 (PARI) Vec(-x*(x^2-58*x+1)/((x-1)*(x^2-898*x+1)) + O(x^100))
%Y A253514 Cf. A001110, A016754, A069099, A157877, A157879, A253446, A253447.
%K A253514 nonn,easy
%O A253514 1,2
%A A253514 _Colin Barker_, Jan 03 2015