This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253547 #24 Mar 21 2025 11:15:51 %S A253547 0,0,0,1,3,9,16,23,33,43,56,69,85,101,120,139,161,183,208,233,261,289, %T A253547 320,351,385,419,456,493,533,573,616,659,705,751,800,849,901,953,1008, %U A253547 1063,1121,1179,1240,1301,1365,1429,1496,1563,1633,1703,1776,1849,1925,2001,2080 %N A253547 Total number of star-shaped dodecagons appearing in a variant of hexagon expansion after n iterations. %C A253547 Total number of hexagons after n iterations is A179178. See illustration. %H A253547 Kival Ngaokrajang, <a href="/A253547/a253547.pdf">Illustration of initial terms</a> %H A253547 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1). %F A253547 Conjectures from _Colin Barker_, Jan 03 2015: (Start) %F A253547 a(n) = (27 - 3*(-1)^n - 28*n + 6*n^2)/8 for n>5. %F A253547 a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>9. %F A253547 G.f.: -x^4*(2*x^5 - 4*x^4 + 3*x^2 + x + 1) / ((x-1)^3*(x+1)). (End) %t A253547 LinearRecurrence[{2,0,-2,1},{0,0,0,1,3,9,16,23,33},60] (* _Harvey P. Dale_, Oct 30 2015 *) %o A253547 (PARI) %o A253547 { %o A253547 a=1;d1=0;print1("0, 0, 0, 1",", "); %o A253547 for(n=4,100, %o A253547 if(n<5,d1=2, %o A253547 if(n<6,d1=6, %o A253547 if(n<7,d1=7, %o A253547 if(Mod(n,2)==0,d1=d1+3 %o A253547 ) %o A253547 ) %o A253547 ) %o A253547 ); %o A253547 a=a+d1; %o A253547 print1(a,", ") %o A253547 ) %o A253547 } %Y A253547 Cf. A179178. %K A253547 nonn,nice,easy %O A253547 1,5 %A A253547 _Kival Ngaokrajang_, Jan 03 2015