A253549 Maximal prime written in decimal among the base-k representations of the n-th prime, read in base 16, for k=2,3,...,16.
2, 17, 257, 19, 19, 19, 65537, 37, 65809, 53, 307, 257, 53, 547, 563, 293, 101, 277, 4099, 577, 4129, 8737, 787, 137, 577, 257, 593, 4643, 4657, 773, 577, 821, 311, 313, 268501249, 74017, 74257, 8707, 359, 8753, 8963, 613, 9011, 12289, 285212929, 577, 135697
Offset: 1
Examples
For n = 19, 67 is the 19th prime, and written in base 2, ..., is '1000011', '2111', '1003', '232', '151', '124', '103', '74', '67', '61', '57', '52', '4b', '47', '43'. Out of these, when read in as hexadecimal numbers, the first prime is 1003_16 which is 4099_10.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A236174.
Programs
-
Python
from sympy import prime, isprime def A253549(n): p = prime(n) for b in range(2,17): x, y, z = p, 0, 1 while x >= b: x, r = divmod(x,b) y += r*z z *= 16 y += x*z if isprime(y): return y
Comments