This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253555 #11 Jan 15 2015 11:40:11 %S A253555 0,1,2,2,3,3,4,3,3,4,5,4,6,5,4,4,7,4,8,5,4,6,9,5,4,7,5,6,10,5,11,5,5, %T A253555 8,5,5,12,9,6,6,13,5,14,7,5,10,15,6,5,5,5,8,16,6,5,7,6,11,17,6,18,12, %U A253555 7,6,6,6,19,9,6,6,20,6,21,13,8,10,6,7,22,7,7,14,23,6,6,15,6,8,24,6,6,11,6,16,7,7,25,6,9,6 %N A253555 a(1) = 0, a(2n) = 1 + a(n), a(2n+1) = 1 + a(A250470(2n+1)); also binary width of terms of A252754 and A252756. %C A253555 a(n) tells how many iterations of A253554 are needed before 1 is reached, i.e., the distance of n from 1 in binary trees like A252753 and A252755. %H A253555 Antti Karttunen, <a href="/A253555/b253555.txt">Table of n, a(n) for n = 1..8192</a> %F A253555 a(1) = 0; for n > 1: a(n) = 1 + a(A253554(n)). %F A253555 a(n) = A029837(1+A252754(n)) = A029837(1+A252756(n)). %F A253555 a(n) = A253556(n) + A253557(n). %F A253555 Other identities. %F A253555 For all n >= 1: %F A253555 a(A000079(n)) = n. [I.e., a(2^n) = n.] %F A253555 a(A000040(n)) = n. %F A253555 a(A001248(n)) = n+1. %F A253555 For n >= 2, a(n) = A253558(n) + A253559(n). %o A253555 (Scheme, three versions, first one using memoization macro definec) %o A253555 (definec (A253555 n) (if (<= n 1) 0 (+ 1 (A253555 (A253554 n))))) %o A253555 (define (A253555 n) (A029837 (+ 1 (A252754 n)))) %o A253555 (define (A253555 n) (A029837 (+ 1 (A252756 n)))) %Y A253555 Cf. A000040, A000079, A001248, A253554. %Y A253555 Cf. also A252753, A252754, A252755, A252756, A253557, A253558, A253559. %Y A253555 Differs from A252464 for the first time at n=21, where a(21) = 4, while A252463(21) = 5. %K A253555 nonn %O A253555 1,3 %A A253555 _Antti Karttunen_, Jan 12 2015