This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253561 #15 Jan 04 2015 22:56:51 %S A253561 2,3,4,6,9,8,5,18,27,16,12,25,54,81,32,10,36,125,162,243,64,24,50,108, %T A253561 625,486,729,128,7,72,250,324,3125,1458,2187,256,15,49,216,1250,972, %U A253561 15625,4374,6561,512,20,75,343,648,6250,2916,78125,13122,19683,1024,48,100,375,2401,1944,31250,8748,390625,39366,59049,2048,14,144,500,1875,16807,5832,156250,26244,1953125,118098,177147,4096 %N A253561 Square array read by antidiagonals: A(row,col) = A122111(A246278(row,col)). %C A253561 If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A253562 gives the inverse permutation. %C A253561 The top row A253568 contains the same terms as A102750, but in different order. %H A253561 Antti Karttunen, <a href="/A253561/b253561.txt">Table of n, a(n) for n = 2..466; the first 30 antidiagonals of the array</a> %F A253561 a(n) = A122111(A246278(n)). [As a linear sequence]. %F A253561 Other identities. %F A253561 A071178(A(row,col)) = row for all col. [All terms on row k have k as the exponent of their largest prime factor.] %F A253561 A253560(A(row,col)) = A(row+1,col). [For any n >= 2, A253560(n) gives the term which is immediately below n in the same column of this array.] %e A253561 The top left corner of the array: %e A253561 2, 3, 6, 5, 12, 10, 24, 7, 15, 20, 48, 14, 96, 40, %e A253561 4, 9, 18, 25, 36, 50, 72, 49, 75, 100, 144, 98, 288, 200, %e A253561 8, 27, 54, 125, 108, 250, 216, 343, 375, 500, 432, 686, 864, 1000, %e A253561 16, 81, 162, 625, 324, 1250, 648, 2401, 1875, 2500,1296, 4802,2592, 5000, %e A253561 32,243, 486,3125, 972, 6250, 1944,16807, 9375,12500,3888,33614,7776,25000, %e A253561 ... %o A253561 (Scheme) (define (A253561 n) (A122111 (A246278 n))) %Y A253561 Inverse: A253562. %Y A253561 The leftmost column: A000079. Topmost row: A253568. %Y A253561 Cf. A071178, A122111, A246278, A102750, A253560, A253563. %K A253561 nonn,tabl %O A253561 2,1 %A A253561 _Antti Karttunen_, Jan 03 2015