A253572 Rectangular array A read by upward antidiagonals in which row A(n) is the sequence of all numbers divisible by no prime exceeding prime(n).
1, 1, 2, 1, 2, 4, 1, 2, 3, 8, 1, 2, 3, 4, 16, 1, 2, 3, 4, 6, 32, 1, 2, 3, 4, 5, 8, 64, 1, 2, 3, 4, 5, 6, 9, 128, 1, 2, 3, 4, 5, 6, 8, 12, 256, 1, 2, 3, 4, 5, 6, 7, 9, 16, 512, 1, 2, 3, 4, 5, 6, 7, 8, 10, 18, 1024, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 2048
Offset: 1
Examples
Array A starts: {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, ...} {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, ...} {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, ...} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, ...} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, ...} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...}
Crossrefs
Programs
-
Mathematica
r = 20; c = 20; cmax = Max[300, Prime[r + 1]]; a[1] = Table[2^j, {j, 0, cmax}]; b[1] = a[1]; For[n = 2, n <= r, n++, a[n_] := a[n] = {}; b[n_] := b[n] = {}; a[n] = Union[Flatten[Table[Prime[n]^j*b[n - 1], {j, 0, cmax}]]]; For[k = 1, k <= cmax, k++, AppendTo[b[n], a[n][[k]]]]]; Table[b[n - k + 1][[k]], {n, 13}, {k, n}] // Flatten (* Array antidiagonals flattened. *) (* Second program: *) rows = 13; smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; t = Table[p = Prime[n]; Take[smoothNumbers[p, If[p == 2, 2^rows, (1/Sqrt[6])* Exp[Sqrt[2*Log[2]*Log[3]*rows]]]], rows-n+1], {n, 1, rows}]; Table[t[[n-k+1, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 09 2016 *)
Formula
A(n) = {prime(1)^(i_1)*...*prime(n)^(i_n) : i_1,...,i_n in {0,1,2,...}}.
A(1) subset A(2) subset A(3) subset ... .
Extensions
First formula corrected by Tom Edgar, Jan 08 2015
Comments