cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253572 Rectangular array A read by upward antidiagonals in which row A(n) is the sequence of all numbers divisible by no prime exceeding prime(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 3, 8, 1, 2, 3, 4, 16, 1, 2, 3, 4, 6, 32, 1, 2, 3, 4, 5, 8, 64, 1, 2, 3, 4, 5, 6, 9, 128, 1, 2, 3, 4, 5, 6, 8, 12, 256, 1, 2, 3, 4, 5, 6, 7, 9, 16, 512, 1, 2, 3, 4, 5, 6, 7, 8, 10, 18, 1024, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 2048
Offset: 1

Views

Author

L. Edson Jeffery, Jan 03 2015

Keywords

Comments

Successive rows tend to A000027.

Examples

			Array A starts:
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, ...}
{1, 2, 3, 4,  6,  8,  9,  12,  16,  18,   24,   27,   32,   36, ...}
{1, 2, 3, 4,  5,  6,  8,   9,  10,  12,   15,   16,   18,   20, ...}
{1, 2, 3, 4,  5,  6,  7,   8,   9,  10,   12,   14,   15,   16, ...}
{1, 2, 3, 4,  5,  6,  7,   8,   9,  10,   11,   12,   14,   15, ...}
{1, 2, 3, 4,  5,  6,  7,   8,   9,  10,   11,   12,   13,   14, ...}
{1, 2, 3, 4,  5,  6,  7,   8,   9,  10,   11,   12,   13,   14, ...}
		

Crossrefs

Cf. A000079, A003586, A051037, A002473, A051038 (these are rows 1-5).
Cf. A000027 (natural numbers), A253573.

Programs

  • Mathematica
    r = 20; c = 20; cmax = Max[300, Prime[r + 1]]; a[1] = Table[2^j, {j, 0, cmax}]; b[1] = a[1]; For[n = 2, n <= r, n++, a[n_] := a[n] = {}; b[n_] := b[n] = {}; a[n] = Union[Flatten[Table[Prime[n]^j*b[n - 1], {j, 0, cmax}]]]; For[k = 1, k <= cmax, k++, AppendTo[b[n], a[n][[k]]]]]; Table[b[n - k + 1][[k]], {n, 13}, {k, n}] // Flatten (* Array antidiagonals flattened. *)
    (* Second program: *)
    rows = 13; smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; t = Table[p = Prime[n]; Take[smoothNumbers[p, If[p == 2, 2^rows, (1/Sqrt[6])* Exp[Sqrt[2*Log[2]*Log[3]*rows]]]], rows-n+1], {n, 1, rows}];  Table[t[[n-k+1, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 09 2016 *)

Formula

A(n) = {prime(1)^(i_1)*...*prime(n)^(i_n) : i_1,...,i_n in {0,1,2,...}}.
A(1) subset A(2) subset A(3) subset ... .

Extensions

First formula corrected by Tom Edgar, Jan 08 2015