This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253574 #35 Jan 05 2022 10:43:25 %S A253574 2,3,7,53,59,67,89,383,887,2027,3253,5669,7993,8009,9059,53633,54667, %T A253574 56533,88883,272777777,299222299,383833883,797769997 %N A253574 Primes p such that digits of p do not appear in p^4. %C A253574 Primes in A111116. %C A253574 No further terms up to 10^9. - _Felix Fröhlich_, Jan 04 2015 %C A253574 No further terms up to 10^10. - _Chai Wah Wu_, Jan 06 2015 %C A253574 No further terms up to 2.5*10^13 - _Giovanni Resta_, Jun 01 2015 %C A253574 No further terms up to 10^19 (via A111116). - _Michael S. Branicky_, Jan 05 2022 %e A253574 2 and 2^4=16 have no digits in common, hence 2 is in the sequence. %t A253574 Select[Prime[Range[1000000]], Intersection[IntegerDigits[#], IntegerDigits[#^4]]=={} &] %o A253574 (PARI) forprime(p=1, 1e9, dip=digits(p); dipf=digits(p^4); sharedi=0; for(i=1, #dip, for(j=1, #dipf, if(dip[i]==dipf[j], sharedi++; break({2})))); if(sharedi==0, print1(p, ", "))) \\ _Felix Fröhlich_, Jan 04 2015 %o A253574 (Python) %o A253574 from sympy import isprime %o A253574 A253574_list = [n for n in range(1,10**6) if set(str(n)) & set(str(n**4)) == set() and isprime(n)] %o A253574 # _Chai Wah Wu_, Jan 06 2015 %Y A253574 Cf. A111116. %Y A253574 Cf. primes such that digits of p do not appear in p^k: A030086 (k=2), A030087 (k=3), this sequence (k=4), no terms (k=5), A253575 (k=6), A253576 (k=7), A253577 (k=8), no terms (k=9), A253578 (k=10). %K A253574 nonn,base,more %O A253574 1,1 %A A253574 _Vincenzo Librandi_, Jan 04 2015 %E A253574 a(20)-a(23) from _Felix Fröhlich_, Jan 04 2015