This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253582 #5 Jan 13 2015 07:33:44 %S A253582 1,3,7,15,14,7,15,29,23,15,27,26,15,31,57,47,46,43,47,55,59,56,29,61, %T A253582 63,95,114,54,55,63,93,87,63,107,87,63,110,93,63,110,95,87,90,95,119, %U A253582 123,125,119,111,125,127,175,159,127,227,159,127,230,159,127 %N A253582 a(n) = A252867(n) OR A252867(n+1). %C A253582 Binary coded union of the two sets, which are coded by A252867(n) and by A252867(n+1); %C A253582 a(n) = A252867(n) + A252867(n+1), as A252867(n) AND A252867(n+1) = 0 by definition of A252867. %H A253582 Reinhard Zumkeller, <a href="/A253582/b253582.txt">Table of n, a(n) for n = 0..10000</a> %e A253582 . n | A252867(n) | binary | a(n) | binary %e A253582 . ----+------------+----------+--------+---------- %e A253582 . 0 | 0 | 0 | 1 | 1 %e A253582 . 1 | 1 | 1 | 3 | 11 %e A253582 . 2 | 2 | 10 | 7 | 111 %e A253582 . 3 | 5 | 101 | 15 | 1111 %e A253582 . 4 | 10 | 1010 | 14 | 1110 %e A253582 . 5 | 4 | 100 | 7 | 111 %e A253582 . 6 | 3 | 11 | 15 | 1111 %e A253582 . 7 | 12 | 1100 | 29 | 11101 %e A253582 . 8 | 17 | 10001 | 23 | 10111 %e A253582 . 9 | 6 | 110 | 15 | 1111 %e A253582 . 10 | 9 | 1001 | 27 | 11011 %e A253582 . 11 | 18 | 10010 | 26 | 11010 %e A253582 . 12 | 8 | 1000 | 15 | 1111 %e A253582 . 13 | 7 | 111 | 31 | 11111 %e A253582 . 14 | 24 | 11000 | 57 | 111001 %e A253582 . 15 | 33 | 100001 | 47 | 101111 %e A253582 . 16 | 14 | 1110 | 46 | 101110 %e A253582 . 17 | 32 | 100000 | 43 | 101011 %e A253582 . 18 | 11 | 1011 | 47 | 101111 %e A253582 . 19 | 36 | 100100 | 55 | 110111 %e A253582 . 20 | 19 | 10011 | 59 | 111011 %e A253582 . 21 | 40 | 101000 | 56 | 111000 %e A253582 . 22 | 16 | 10000 | 29 | 11101 %e A253582 . 23 | 13 | 1101 | 61 | 111101 %e A253582 . 24 | 48 | 110000 | 63 | 111111 %e A253582 . 25 | 15 | 1111 | 95 | 1011111 %e A253582 . 26 | 80 | 1010000 | 114 | 1110010 %e A253582 . 27 | 34 | 100010 | 54 | 110110 %e A253582 . 28 | 20 | 10100 | 55 | 110111 %e A253582 . 29 | 35 | 100011 | 63 | 111111 %e A253582 . 30 | 28 | 11100 | 93 | 1011101 %o A253582 (Haskell) %o A253582 import Data.Bits ((.|.)) %o A253582 a253582 n = a253582_list !! n %o A253582 a253582_list = zipWith (.|.) a252867_list $ tail a252867_list :: [Int] %o A253582 a253582_list' = zipWith (+) a252867_list $ tail a252867_list %Y A253582 Cf. A252867, A253581, A007088. %K A253582 nonn %O A253582 0,2 %A A253582 _Reinhard Zumkeller_, Jan 12 2015