This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253583 #27 Feb 23 2024 13:40:48 %S A253583 2,1,8,2,2,4,7,2,7,1,9,4,3,4,4,2,8,0,7,1,2,0,1,4,5,2,2,8,3,7,9,6,1,7, %T A253583 7,6,2,6,5,1,7,4,6,6,7,7,4,8,0,6,0,1,8,8,1,4,0,7,2,8,2,1,4,6,4,7,3,5, %U A253583 6,0,2,2,0,1,1,4,4,4,7,4,8,4,0,6,6,6,6,0,1,6,7,6,4,3,5,4 %N A253583 Decimal expansion of cube root of 2 multiplied by square root of 3. %C A253583 Multiplied by i or -i, imaginary part of either complex cube root of 16. %C A253583 2^(1/3) sqrt(3) = distance between the critical points of xy(x+y)=1. - _Clark Kimberling_, Oct 05 2020 %H A253583 Chai Wah Wu, <a href="/A253583/b253583.txt">Table of n, a(n) for n = 1..10000</a> %F A253583 (-2^(1/3) + 2^(1/3)sqrt(-3))^3 = 16. %F A253583 Equals A002580 * A002194. - _Omar E. Pol_, Jan 04 2015 %e A253583 2.18224727194344280712014522837961776265174667748060188140728214647356... %t A253583 RealDigits[2^(1/3) Sqrt[3], 10, 100][[1]] %o A253583 (PARI) sqrtn(2, 3)*sqrt(3) \\ _Michel Marcus_, Oct 18 2016 %Y A253583 Cf. A002194, A002580. %K A253583 nonn,cons,easy %O A253583 1,1 %A A253583 _Alonso del Arte_, Jan 04 2015