A253598 a(n) = least Lucas-Carmichael number which is divisible by b(n), where {b(n)} (A255602) is the list of all numbers which could be a divisor of a Lucas-Carmichael number.
399, 399, 935, 399, 935, 2015, 935, 399, 399, 4991, 51359, 2015, 8855, 1584599, 9486399, 20705, 5719, 18095, 2915, 935, 399, 46079, 162687, 2015, 22847, 46079, 16719263, 8855, 12719, 7055, 935, 80189, 189099039, 104663, 20705, 482143, 196559, 60059, 30073928079, 90287, 8855, 31535
Offset: 1
Keywords
Examples
a(12) = 8855 because this is the least Lucas-Carmichael number which is divisible by A255602(12) = 35.
Links
- Daniel Suteu, Table of n, a(n) for n = 1..932 (first 95 terms from Tim Johannes Ohrtmann, terms 96..154 from Robert G. Wilson v)
Programs
-
Mathematica
LucasCarmichaelQ[n_] := Block[{fi = FactorInteger@ n}, ! PrimeQ@ n && Times @@ (Last@# & /@ fi) == 1 && Plus @@ Mod[n + 1, 1 + First@# & /@ fi] == 0]; LucasCarmichaelQ[1] = False; fQ[n_] := Block[{fi = FactorInteger@ n}, ffi = First@# & /@ fi; Times @@ (Last@# & /@ fi) == 1 && Min@ Flatten@ Table[Mod[1 + ffi, i], {i, ffi}] > 0]; fQ[1] = True; fQ[2] = False; lcdv = Select[ Range@ 3204, fQ]; f[n_] := Block[{k = lcdv[[n]]}, d = 2k; While[ !LucasCarmichaelQ@ k, k += d]; k]; Array[f, 95] (* Robert G. Wilson v, Feb 11 2015 *)
Extensions
a(96) from Charles R Greathouse IV, Feb 12 2015
Comments