cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253598 a(n) = least Lucas-Carmichael number which is divisible by b(n), where {b(n)} (A255602) is the list of all numbers which could be a divisor of a Lucas-Carmichael number.

Original entry on oeis.org

399, 399, 935, 399, 935, 2015, 935, 399, 399, 4991, 51359, 2015, 8855, 1584599, 9486399, 20705, 5719, 18095, 2915, 935, 399, 46079, 162687, 2015, 22847, 46079, 16719263, 8855, 12719, 7055, 935, 80189, 189099039, 104663, 20705, 482143, 196559, 60059, 30073928079, 90287, 8855, 31535
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jan 05 2015

Keywords

Comments

a(933) <= 266336887317945807999. - Daniel Suteu, Dec 01 2023

Examples

			a(12) = 8855 because this is the least Lucas-Carmichael number which is divisible by A255602(12) = 35.
		

Crossrefs

Programs

  • Mathematica
    LucasCarmichaelQ[n_] := Block[{fi = FactorInteger@ n}, ! PrimeQ@ n && Times @@ (Last@# & /@ fi) == 1 && Plus @@ Mod[n + 1, 1 + First@# & /@ fi] == 0]; LucasCarmichaelQ[1] = False; fQ[n_] := Block[{fi = FactorInteger@ n}, ffi = First@# & /@ fi; Times @@ (Last@# & /@ fi) == 1 && Min@ Flatten@ Table[Mod[1 + ffi, i], {i, ffi}] > 0]; fQ[1] = True; fQ[2] = False; lcdv = Select[ Range@ 3204, fQ]; f[n_] := Block[{k = lcdv[[n]]}, d = 2k; While[ !LucasCarmichaelQ@ k, k += d]; k]; Array[f, 95] (* Robert G. Wilson v, Feb 11 2015 *)

Extensions

a(96) from Charles R Greathouse IV, Feb 12 2015

A299213 Lucas-Carmichael numbers whose prime factors do not divide any smaller Lucas-Carmichael number.

Original entry on oeis.org

399, 935, 565861139, 5778659039, 22824172799, 49569379679, 221511111527, 572531110799, 745012846679
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 05 2018

Keywords

Comments

Also numbers whose number of occurrence in A253597 equals the number of their prime factors.
All known terms have only 3 prime factors. Does any term with more than 3 prime factors exist?

Examples

			565861139 = 193*1163*2521 and no smaller Lucas-Carmichael number is divisible by 193, 1163 or 2521.
		

Crossrefs

Programs

  • PARI
    a=readvec("b006972.txt"); print1(399); for(b=2,10000, e=true; f=factor(a[b]); for(d=1,#f[, 1], for(c=1,b-1, if(a[c]%f[d,1]==0, e=false))); if(e==true, print1(", ",a[b])))
Showing 1-2 of 2 results.