This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253607 #7 Dec 23 2024 14:53:44 %S A253607 1,-1,2,1,-2,-1,2,2,1,-2,-2,-1,2,2,2,1,-2,-2,-2,-1,2,2,2,2,1,-2,-2,-2, %T A253607 -2,-1,2,2,2,2,2,1,-2,-2,-2,-2,-2,-1,2,2,2,2,2,2,1,-2,-2,-2,-2,-2,-2, %U A253607 -1,2,2,2,2,2,2,2,1,-2,-2,-2,-2,-2,-2,-2,-1,2,2 %N A253607 First differences of A253580, when the tree is seen as flattened list. %C A253607 a(n) != 0 and -2 <= a(n) <= +2. %C A253607 a(n) = 1 iff A253580(n+1) = A253580(n) + 1, marked with X in the table below, where also the erasure of pairs of consecutive terms in A253580 is illustrated; %C A253607 a(A005563(n)) = 1; a(A028387(n)) = -1; %C A253607 a(A061885(n)) > 0; a(A064801(n)) < 0. %H A253607 Reinhard Zumkeller, <a href="/A253607/b253607.txt">Table of n, a(n) for n = 0..10000</a> %H A253607 Éric Angelini, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2015-January/014247.html">More fractal trees - and erasures</a>, SeqFan list, Jan 04 2015. %e A253607 . n | A253580(n) | a(n) | erased | reappearing %e A253607 . ---+------------+------+--------+------------- %e A253607 . 0 | X 0 | 1 | 0 | %e A253607 . 1 | X 1 | -1 | 1 | %e A253607 . 2 | 0 | 2 | | 0 %e A253607 . 3 | X 2 | 1 | 2 | %e A253607 . 4 | X 3 | -2 | 3 | %e A253607 . 5 | 1 | -1 | | 1 %e A253607 . 6 | 0 | 2 | | 0 %e A253607 . 7 | 2 | 2 | | 2 %e A253607 . 8 | X 4 | 1 | 4 | %e A253607 . 9 | X 5 | -2 | 5 | %e A253607 . 10 | 3 | -2 | | 3 %e A253607 . 11 | 1 | -1 | | 1 %e A253607 . 12 | 0 | 2 | | 0 %e A253607 . 13 | 2 | 2 | | 2 %e A253607 . 14 | 4 | 2 | | 4 %e A253607 . 15 | X 6 | 1 | 6 | %e A253607 . 16 | X 7 | -2 | 7 | %e A253607 . 17 | 5 | -2 | | 5 %e A253607 . 18 | 3 | -2 | | 3 %e A253607 . 19 | 1 | -1 | | 1 %e A253607 . 20 | 0 | 2 | | 0 %e A253607 . 21 | 2 | 2 | | 2 %e A253607 . 22 | 4 | 2 | | 4 %e A253607 . 23 | 6 | 2 | | 6 %e A253607 . 24 | X 8 | 1 | 8 | %e A253607 . 25 | X 9 | -2 | 9 | . %o A253607 (Haskell) %o A253607 a253607 n = a253607_list !! n %o A253607 a253607_list = zipWith (-) (tail a253580_list) a253580_list %Y A253607 Cf. A253580, A005563, A028387, A061885, A064801. %K A253607 sign %O A253607 0,3 %A A253607 _Reinhard Zumkeller_, Jan 05 2015