cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253621 Indices of centered heptagonal numbers (A069099) which are also centered pentagonal numbers (A005891).

This page as a plain text file.
%I A253621 #30 Sep 08 2022 08:46:10
%S A253621 1,6,66,781,9301,110826,1320606,15736441,187516681,2234463726,
%T A253621 26626048026,317278112581,3780711302941,45051257522706,
%U A253621 536834378969526,6396961290111601,76226701102369681,908323451938324566,10823654722157525106,128975533213951976701
%N A253621 Indices of centered heptagonal numbers (A069099) which are also centered pentagonal numbers (A005891).
%C A253621 Also positive integers y in the solutions to 5*x^2 - 7*y^2 - 5*x + 7*y = 0, the corresponding values of x being A133272.
%H A253621 Colin Barker, <a href="/A253621/b253621.txt">Table of n, a(n) for n = 1..930</a>
%H A253621 Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2016volume16/FG2016volume16.pdf#page=423">Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences</a>, Forum Geometricorum, Volume 16 (2016) 419-427.
%H A253621 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (13,-13,1).
%F A253621 a(n) = 13*a(n-1)-13*a(n-2)+a(n-3).
%F A253621 G.f.: -x*(x^2-7*x+1) / ((x-1)*(x^2-12*x+1)).
%F A253621 a(n) = (14-(-7+sqrt(35))*(6+sqrt(35))^n+(6-sqrt(35))^n*(7+sqrt(35)))/28. - _Colin Barker_, Mar 05 2016
%F A253621 a(n) = 12*a(n-1) - a(n-2) - 5. - _Vincenzo Librandi_, Mar 05 2016
%F A253621 a(n) = (5*a(n-1) + a(n-1)^2) / a(n-2), n >= 3. - _Seiichi Manyama_, Aug 11 2016
%e A253621 6 is in the sequence because the 6th centered heptagonal number is 106, which is also the 7th centered pentagonal number.
%t A253621 RecurrenceTable[{a[1] == 1, a[2] == 6, a[n] == 12 a[n-1] - a[n-2] - 5}, a, {n, 20}] (* _Vincenzo Librandi_, Mar 05 2016 *)
%o A253621 (PARI) Vec(-x*(x^2-7*x+1)/((x-1)*(x^2-12*x+1)) + O(x^100))
%o A253621 (Magma) I:=[1,6]; [n le 2 select I[n] else 12*Self(n-1)-Self(n-2)-5: n in [1..20]]; // _Vincenzo Librandi_, Mar 05 2016
%Y A253621 Cf. A005891, A069099, A133272, A253622.
%K A253621 nonn,easy
%O A253621 1,2
%A A253621 _Colin Barker_, Jan 06 2015