cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253622 Centered heptagonal numbers (A069099) which are also centered pentagonal numbers (A005891).

This page as a plain text file.
%I A253622 #12 Mar 07 2016 12:57:20
%S A253622 1,106,15016,2132131,302747551,42988020076,6103996103206,
%T A253622 866724458635141,123068769130086781,17474898492013687726,
%U A253622 2481312517096813570276,352328902529255513291431,50028222846637186073812891,7103655315319951166968139056
%N A253622 Centered heptagonal numbers (A069099) which are also centered pentagonal numbers (A005891).
%H A253622 Colin Barker, <a href="/A253622/b253622.txt">Table of n, a(n) for n = 1..465</a>
%H A253622 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (143,-143,1).
%F A253622 a(n) = 143*a(n-1)-143*a(n-2)+a(n-3).
%F A253622 G.f.: -x*(x^2-37*x+1) / ((x-1)*(x^2-142*x+1)).
%F A253622 a(n) = (4+(6+sqrt(35))*(71+12*sqrt(35))^(-n)-(-6+sqrt(35))*(71+12*sqrt(35))^n)/16. - _Colin Barker_, Mar 07 2016
%e A253622 106 is in the sequence because it is the 6th centered heptagonal number and the 7th centered pentagonal number.
%t A253622 LinearRecurrence[{143,-143,1},{1,106,15016},20] (* _Harvey P. Dale_, Feb 25 2016 *)
%o A253622 (PARI) Vec(-x*(x^2-37*x+1)/((x-1)*(x^2-142*x+1)) + O(x^100))
%Y A253622 Cf. A005891, A069099, A133272, A253621.
%K A253622 nonn,easy
%O A253622 1,2
%A A253622 _Colin Barker_, Jan 06 2015