This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253622 #12 Mar 07 2016 12:57:20 %S A253622 1,106,15016,2132131,302747551,42988020076,6103996103206, %T A253622 866724458635141,123068769130086781,17474898492013687726, %U A253622 2481312517096813570276,352328902529255513291431,50028222846637186073812891,7103655315319951166968139056 %N A253622 Centered heptagonal numbers (A069099) which are also centered pentagonal numbers (A005891). %H A253622 Colin Barker, <a href="/A253622/b253622.txt">Table of n, a(n) for n = 1..465</a> %H A253622 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (143,-143,1). %F A253622 a(n) = 143*a(n-1)-143*a(n-2)+a(n-3). %F A253622 G.f.: -x*(x^2-37*x+1) / ((x-1)*(x^2-142*x+1)). %F A253622 a(n) = (4+(6+sqrt(35))*(71+12*sqrt(35))^(-n)-(-6+sqrt(35))*(71+12*sqrt(35))^n)/16. - _Colin Barker_, Mar 07 2016 %e A253622 106 is in the sequence because it is the 6th centered heptagonal number and the 7th centered pentagonal number. %t A253622 LinearRecurrence[{143,-143,1},{1,106,15016},20] (* _Harvey P. Dale_, Feb 25 2016 *) %o A253622 (PARI) Vec(-x*(x^2-37*x+1)/((x-1)*(x^2-142*x+1)) + O(x^100)) %Y A253622 Cf. A005891, A069099, A133272, A253621. %K A253622 nonn,easy %O A253622 1,2 %A A253622 _Colin Barker_, Jan 06 2015