This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253635 #22 Dec 30 2019 19:39:01 %S A253635 1,1,4,1,7,7,1,9,20,10,1,10,34,40,14,1,10,46,86,67,17,1,10,55,141,175, %T A253635 101,20,1,10,62,192,338,313,142,24,1,10,67,242,522,694,507,190,27,1, %U A253635 10,72,287,733,1197,1273,768,244,30 %N A253635 Rectangular array read by upwards antidiagonals: a(n,k) = index of largest term <= 10^k in row n of A253572, n >= 1, k >= 0. %C A253635 Or a(n,k) = the number of positive integers less than or equal to 10^k that are divisible by no prime exceeding prime(n). %e A253635 Array begins: %e A253635 {1, 4, 7, 10, 14, 17, 20, 24, 27, 30, ...} %e A253635 {1, 7, 20, 40, 67, 101, 142, 190, 244, 306, ...} %e A253635 {1, 9, 34, 86, 175, 313, 507, 768, 1105, 1530, ...} %e A253635 {1, 10, 46, 141, 338, 694, 1273, 2155, 3427, 5194, ...} %e A253635 {1, 10, 55, 192, 522, 1197, 2432, 4520, 7838, 12867, ...} %e A253635 {1, 10, 62, 242, 733, 1848, 4106, 8289, 15519, 27365, ...} %e A253635 {1, 10, 67, 287, 945, 2579, 6179, 13389, 26809, 50351, ...} %e A253635 {1, 10, 72, 331, 1169, 3419, 8751, 20198, 42950, 85411, ...} %e A253635 {1, 10, 76, 369, 1385, 4298, 11654, 28434, 63768, 133440, ...} %e A253635 {1, 10, 79, 402, 1581, 5158, 14697, 37627, 88415, 193571, ...} %t A253635 r = 10; y[1] = t = Table[2^j, {j, 0, 39}]; max = 10^13; len = 10^10; prev = 0; For[n = 2, n <= r, n++, next = 0; For[k = 1, k <= 43, k++, If[Prime[n]^k < max, t = Union[t, Prime[n]*t]; s = FirstPosition[t, v_ /; v > len, 0]; t = Take[t, s[[1]] - 1]; If[t[[-1]] > len, t = Delete[t, -1]]; next = Length[t]; If[next == prev, Break, prev = next], Break]]; y[n] = t]; b[i_, j_] := FirstPosition[y[i], v_ /; v > 10^j][[1]]; a253635[n_, j_] := If[IntegerQ[b[n, j]], b[n, j] - 1, 0]; Flatten[Table[a253635[n - j, j], {n, r}, {j, 0, n - 1}]] (* array antidiagonals flattened *) %Y A253635 Cf. A123384, A100752, A106598, A106600, A107352, A106629, A108275, A108276, A108277 (rows 1-9). %Y A253635 Cf. A011557, A066343, A253572, A253573. %K A253635 nonn,tabl %O A253635 1,3 %A A253635 _L. Edson Jeffery_, Jan 07 2015