A253642 Number of ways the perfect power A001597(n) can be written as a^b, with a, b > 1.
0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
a(1)=0 since A001597(1)=1 can be written as a^b for a=1 and any b, but not using a base a > 1. a(2)=a(3)=a(4)=1 since the following terms 4=2^2, 8=2^3 and 9=3^2 can be written as perfect powers in only one way. a(5)=2 since A001597(5)=16=a^b for (a,b)=(2,4) and (4,2).
Programs
-
PARI
for(n=1,9999,(e=ispower(n))&&print1(numdiv(e)-1,","))
-
Python
from math import gcd from sympy import mobius, integer_nthroot, divisor_count, factorint def A253642(n): if n == 1: return 0 def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return divisor_count(gcd(*factorint(kmax).values()))-1 # Chai Wah Wu, Aug 13 2024
Comments