cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253665 a(n) = 2^n*n!/(floor(n/2)!)^2.

Original entry on oeis.org

1, 2, 8, 48, 96, 960, 1280, 17920, 17920, 322560, 258048, 5677056, 3784704, 98402304, 56229888, 1686896640, 843448320, 28677242880, 12745441280, 484326768640, 193730707456, 8136689713152, 2958796259328, 136104627929088, 45368209309696, 2268410465484800
Offset: 0

Views

Author

Peter Luschny, Feb 01 2015

Keywords

Crossrefs

Programs

  • Maple
    a := n -> 2^n*n!/iquo(n,2)!^2: seq(a(n), n=0..25);
  • Mathematica
    Table[2^n*n!/Floor[n/2]!^2, {n, 0, 25}] (* Michael De Vlieger, Feb 02 2015 *)
    CoefficientList[Series[(1 + 2 (1 - 8 x) x)/(1 - 16 x^2)^(3/2), {x, 0, 20}],x] (* Benedict W. J. Irwin, Aug 15 2016 *)
  • PARI
    a(n)=2^n*n!/(n\2)!^2 \\ Charles R Greathouse IV, Aug 25 2016

Formula

a(n) = 2^n*A056040(n).
a(2*n) = 4^n*C(2*n, n) = A098430(n).
a(n) = sum(k=0..n, C(n,k)*n!/(floor(n/2)!)^2) = sum(k=0..n, A253666(n,k)).
G.f.: (1+2*(1-8*x)*x)/(1-16*x^2)^(3/2). - Benedict W. J. Irwin, Aug 15 2016