A253667 Square array read by ascending antidiagonals, T(n, k) = k!*[x^k](exp(-x) *sum(j=0..n, C(n,j)*x^j)), n>=0, k>=0.
1, 1, -1, 1, 0, 1, 1, 1, -1, -1, 1, 2, -1, 2, 1, 1, 3, 1, -1, -3, -1, 1, 4, 5, -4, 5, 4, 1, 1, 5, 11, -1, 1, -11, -5, -1, 1, 6, 19, 14, -15, 14, 19, 6, 1, 1, 7, 29, 47, -19, 19, -47, -29, -7, -1, 1, 8, 41, 104, 37, -56, 37, 104, 41, 8, 1
Offset: 0
Examples
Square array starts: [n\k][0 1 2 3 4 5 6] [0] 1, -1, 1, -1, 1, -1, 1, ... [1] 1, 0, -1, 2, -3, 4, -5, ... [2] 1, 1, -1, -1, 5, -11, 19, ... [3] 1, 2, 1, -4, 1, 14, -47, ... [4] 1, 3, 5, -1, -15, 19, 37, ... [5] 1, 4, 11, 14, -19, -56, 151, ... [6] 1, 5, 19, 47, 37, -151, -185, ... The first few rows as a triangle: 1, 1, -1, 1, 0, 1, 1, 1, -1, -1, 1, 2, -1, 2, 1, 1, 3, 1, -1, -3, -1, 1, 4, 5, -4, 5, 4, 1.
Crossrefs
Cf. A009940.
Programs
-
Maple
T := (n,k) -> k!*coeff(series(exp(-x)*add(binomial(n,j)*x^j, j=0..n), x, k+1), x, k): for n from 0 to 6 do lprint(seq(T(n,k),k=0..6)) od;
Formula
T(n,n) = A009940(n).