A253669 Square array read by ascending antidiagonals, T(n, k) = k!*[x^k](log(x+1)*sum(j=0..n, C(2*n,j)*x^j)), n>=0, k>=0.
0, 0, 1, 0, 1, -1, 0, 1, 3, 2, 0, 1, 7, -4, -6, 0, 1, 11, 26, 10, 24, 0, 1, 15, 74, -46, -36, -120, 0, 1, 19, 146, 342, 144, 168, 720, 0, 1, 23, 242, 1066, -756, -624, -960, -5040, 0, 1, 27, 362, 2414, 5944, 2844, 3408, 6480, 40320, 0, 1, 31, 506, 4578, 19524
Offset: 0
Examples
Square array starts: [n\k][0 1 2 3 4 5 6] [0] 0, 1, -1, 2, -6, 24, -120, ... [1] 0, 1, 3, -4, 10, -36, 168, ... [2] 0, 1, 7, 26, -46, 144, -624, ... [3] 0, 1, 11, 74, 342, -756, 2844, ... [4] 0, 1, 15, 146, 1066, 5944, -15768, ... [5] 0, 1, 19, 242, 2414, 19524, 127860, ... [6] 0, 1, 23, 362, 4578, 48504, 434568, ... The first few rows as a triangle: 0, 0, 1, 0, 1, -1, 0, 1, 3, 2, 0, 1, 7, -4, -6, 0, 1, 11, 26, 10, 24, 0, 1, 15, 74, -46, -36, -120, 0, 1, 19, 146, 342, 144, 168, 720.
Crossrefs
Cf. A098118.
Programs
-
Maple
T := (n,k) -> k!*coeff(series(ln(x+1)*add(binomial(2*n,j)*x^j, j=0..n), x, k+1), x, k): for n from 0 to 6 do lprint(seq(T(n,k), k=0..6)) od;
Formula
T(n,n) = A098118(n).