This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253671 #48 Jul 09 2025 04:39:27 %S A253671 1,1,2,2,3,3,4,5,5,6,7,7,8,8,9,10,10,11,12,12,13,14,14,15,15,16,17,17, %T A253671 18,19,19,20,21,21,22,22,23,24,24,25,26,26,27,28,28,29,29,30,31,31,32, %U A253671 33,33,34,35,35,36,36,37,38,38,39,40,40 %N A253671 a(n) = floor(A000111(n)/A000111(n-1)). %C A253671 1, 2, 3, 4, ... first appear at n = 1, 3, 5, 7, 8, 10, 11, 13, ... . a(500) = 318. %C A253671 Numbers appearing only once: interleave 4+7*n, 6+7*n, 9+7*n = 4, 6, 9, 11, 13, 16, ... . %C A253671 This is a nondecreasing sequence. %C A253671 The ratio a(n)/n asymptotically tends to 7/11 = 0.6363... - _Jean-François Alcover_, Jul 21 2015 %H A253671 Colin Barker, <a href="/A253671/b253671.txt">Table of n, a(n) for n = 1..1000</a> %H A253671 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,0,1,-1). %F A253671 a(n+2) = a(n+1) + (0, 1, 0, followed by a sequence of period 11: repeat 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1). %F A253671 a(n+12) = a(n+1) + (6, 7, 6, followed by 7's = A010727). %F A253671 a(n) = a(n-1) + a(n-11) - a(n-12) for n>15. - _Colin Barker_, Jan 22 2015 %F A253671 G.f.: x*(x^14-x^13+x^12-x^11+x^10+x^9+x^7+x^6+x^4+x^2+1) / ((x-1)^2*(x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)). - _Colin Barker_, Jan 22 2015 %e A253671 Floor of 1/1, 1/1, 2/1, 5/2, 16/5, 61/16, ... . %e A253671 1=1*1+0, 1=1*1+0, 2=2*1+0, 5=2*2+1, 16=3*5+1, 61=3*16+13, 272=4*61+28, ... . %t A253671 max = 500; ee = Table[2^n*EulerE[n, 1] + EulerE[n] - 1, {n, 0, max}]; A000111 = Table[Differences[ee, n] // First // Abs, {n, 0, max}]; Table[Quotient[A000111[[n + 1]], A000111[[n]]], {n, 1, max}] (* _Jean-François Alcover_, Jan 08 2015 *) %o A253671 (PARI) Vec(x*(x^14-x^13+x^12-x^11+x^10+x^9+x^7+x^6+x^4+x^2+1)/((x-1)^2*(x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)) + O(x^100)) \\ _Colin Barker_, Jan 22 2015 %o A253671 (Python) %o A253671 # requires python 3.2 or higher %o A253671 from itertools import accumulate %o A253671 A253671_list, blist, l1, l2 = [1], [1], 1, 1 %o A253671 for n in range(10**2): %o A253671 blist = list(reversed(list(accumulate(reversed(blist))))) + [0] if n % 2 else [0]+list(accumulate(blist)) %o A253671 l2, l1 = l1, sum(blist) %o A253671 A253671_list.append(l1//l2) # _Chai Wah Wu_, Jan 29 2015 %Y A253671 Cf. A000111, A010727, A017005, A017029, A017053. %K A253671 nonn,easy %O A253671 1,3 %A A253671 _Paul Curtz_, Jan 08 2015, with the help of _Jean-François Alcover_