This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253672 #20 Dec 23 2024 14:53:44 %S A253672 0,1,2,0,1,3,4,5,2,0,1,3,4,6,7,8,5,2,0,1,3,4,6,7,9,10,11,8,5,2,0,1,3, %T A253672 4,6,7,9,10,12,13,14,11,8,5,2,0,1,3,4,6,7,9,10,12,13,15,16,17,14,11,8, %U A253672 5,2,0,1,3,4,6,7,9,10,12,13,15,16,18,19,20 %N A253672 Another fractal t(h)ree. %C A253672 A008585(n+1) = length of row n; A062741(n+1) = sum of row n; %C A253672 the fractal nature is illustrated by the following manipulation: remove from all rows the first two terms and also the last one, after subtracting all terms by 3, the original t(h)ree will reappear. %H A253672 Reinhard Zumkeller, <a href="/A253672/b253672.txt">Rows n = 0..100 of triangle, flattened</a> %H A253672 Éric Angelini, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2015-January/014268.html">More (and more) fractal trees - and erasures</a>, SeqFan list, Jan 08 2015. %F A253672 T(n,0) = 0; T(n,1)=1; T(n,2*n-1) = 2; T(n+1,k+2) = T(n,k)+3, k = 0..3*n-1. %e A253672 . 0: | 0 1 2| %e A253672 . 1: 0 1 | 3 4 5| 2 %e A253672 . 2: 0 1 3 4 | 6 7 8| 5 2 %e A253672 . 3: 0 1 3 4 6 7 | 9 10 11| 8 5 2 %e A253672 . 4: 0 1 3 4 6 7 9 10 |12 13 14| 11 8 5 2 %e A253672 . 5: 0 1 3 4 6 7 9 10 12 13 |15 16 17| 14 11 8 5 2 %e A253672 . 6: 0 1 3 4 6 7 9 10 12 13 15 16 |18 19 20| 17 14 11 8 5 2 %e A253672 . 7: 0 1 3 4 6 7 9 10 12 13 15 16 18 19 |21 22 23| 20 17 14 11 8 5 2 . %o A253672 (Haskell) %o A253672 a253672 n k = a253672_tabf !! n !! k %o A253672 a253672_row n = a253672_tabf !! n %o A253672 a253672_tabf = [0,1,2] : f [] [0,1,2] [] (iterate (map (+ 3)) [3..5]) where %o A253672 f as bs cs (uvws:uvwss) = (as' ++ uvws ++ cs') : f as' uvws cs' uvwss %o A253672 where as' = as ++ [u,v]; cs' = [w] ++ cs %o A253672 [u,v,w] = bs %o A253672 a253672_list = concat a253672_tabf %Y A253672 Cf. A008585, A062741. %K A253672 nonn,tabf %O A253672 0,3 %A A253672 _Eric Angelini_ and _Reinhard Zumkeller_, Jan 08 2015