cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253673 Indices of centered triangular numbers (A005448) that are also centered octagonal numbers (A016754).

This page as a plain text file.
%I A253673 #12 Aug 07 2023 10:17:10
%S A253673 1,16,65,1520,6321,148896,619345,14590240,60689441,1429694576,
%T A253673 5946945825,140095478160,582740001361,13727927165056,57102573187505,
%U A253673 1345196766697280,5595469432374081,131815555209168336,548298901799472385,12916579213731799600
%N A253673 Indices of centered triangular numbers (A005448) that are also centered octagonal numbers (A016754).
%C A253673 Also positive integers x in the solutions to 3*x^2 - 8*y^2 - 3*x + 8*y = 0, the corresponding values of y being A253674.
%C A253673 Also indices of centered square numbers (A001844) that are also octagonal numbers (A000567). - _Colin Barker_, Feb 10 2015
%H A253673 Colin Barker, <a href="/A253673/b253673.txt">Table of n, a(n) for n = 1..1000</a>
%H A253673 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,98,-98,-1,1).
%F A253673 a(n) = a(n-1)+98*a(n-2)-98*a(n-3)-a(n-4)+a(n-5).
%F A253673 G.f.: x*(3*x-1)*(5*x^2+18*x+1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)).
%e A253673 16 is in the sequence because the 16th centered triangular number is 361, which is also the 10th centered octagonal number.
%t A253673 LinearRecurrence[{1,98,-98,-1,1},{1,16,65,1520,6321},20] (* _Harvey P. Dale_, Aug 07 2023 *)
%o A253673 (PARI) Vec(x*(3*x-1)*(5*x^2+18*x+1)/((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))
%Y A253673 Cf. A005448, A016754, A253674, A253675.
%Y A253673 Cf. A000567, A001844, A254895, A254896.
%K A253673 nonn,easy
%O A253673 1,2
%A A253673 _Colin Barker_, Jan 08 2015