cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253676 Irregular triangle T read by rows in which row n is the result of iterating the function S defined in A257480 and terminating at the first occurrence of 1, assuming the 3x+1 (or Collatz) conjecture.

Original entry on oeis.org

1, 2, 1, 3, 5, 4, 2, 1, 4, 2, 1, 5, 4, 2, 1, 6, 1, 7, 8, 5, 4, 2, 1, 8, 5, 4, 2, 1, 9, 7, 8, 5, 4, 2, 1, 10, 5, 4, 2, 1, 11, 41, 31, 35, 59, 149, 112, 95, 107, 608, 770, 145, 109, 82, 16, 14, 2, 1, 12, 5, 4, 2, 1, 13, 10, 5, 4, 2, 1, 14, 2, 1, 15, 17, 13, 10, 5, 4, 2, 1
Offset: 1

Views

Author

L. Edson Jeffery, May 02 2015

Keywords

Examples

			T begins:
.    1
.    2  1
.    3  5  4  2  1
.    4  2  1
.    5  4  2  1
.    6  1
.    7  8  5  4  2   1
.    8  5  4  2  1
.    9  7  8  5  4   2   1
.   10  5  4  2  1
.   11 41 31 35 59 149 112 95 107 608 770 145 109 82 16 14 2 1
.   12  5  4  2  1
.   13 10  5  4  2   1
.   14  2  1
.   15 17 13 10  5   4   2  1
		

Crossrefs

Cf. A257480 and cross references therein.

Programs

  • Mathematica
    v[n_] := IntegerExponent[n, 2]; f[x_] := (3*x + 1)/2^v[3*x + 1]; s[n_] := (3 + (3/2)^v[1 + f[4*n - 3]]*(1 + f[4*n - 3]))/6; t[n_] := NestWhileList[s[#] &, n, # > 1 &]; Flatten[Table[t[n], {n, 15}]] (* Replace Flatten with Grid to get the irregular triangle. *)