cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253680 Numbers c(n) whose square are equal to the sum of an odd number M of consecutive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c(n)^2, starting at b(n) (A253679).

This page as a plain text file.
%I A253680 #51 Sep 08 2022 08:46:10
%S A253680 204,2940,16296,57960,159060,368004,754320,1412496,2465820,4070220,
%T A253680 6418104,9742200,14319396,20474580,28584480,39081504,52457580,
%U A253680 69267996,90135240,115752840,146889204,184391460,229189296,282298800,344826300,417972204,503034840
%N A253680 Numbers c(n) whose square are equal to the sum of an odd number M of consecutive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c(n)^2, starting at b(n) (A253679).
%C A253680 Numbers c(n) such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers for M being an odd positive integer.
%C A253680 To every odd positive integer M corresponds a sum of M consecutive cubed integers starting at b^3 having at least one nontrivial solution. For n>=1, M(n)=(2n+1) (A005408), b(n) = M^3 -(3M-1)/2 = (2n+1)^3 - (3n+1) (A253679) and c(n) = M*(M^2-1)*(2M^2-1)/2 = 2n*(n+1)*(2n+1)*(8n*(n+1)+1) (A253680).
%C A253680 The trivial solutions with M < 1 and b < 2 are not considered here.
%C A253680 Stroeker stated that all odd values of M yield a solution to  b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2. This was further demonstrated by Pletser.
%H A253680 Vladimir Pletser, <a href="/A253680/b253680.txt">Table of n, a(n) for n = 1..50000</a>
%H A253680 Vladimir Pletser, <a href="/A253680/a253680.txt">File Triplets (M,b,c) for M=(2n+1)</a>
%H A253680 Vladimir Pletser, <a href="http://www.researchgate.net/profile/Vladimir_Pletser/publication/271272786">Number of terms, first term and square root of sums of consecutive cubed integers equal to integer squares</a>, Research Gate, 2015.
%H A253680 Vladimir Pletser, <a href="http://arxiv.org/abs/1501.06098">General solutions of sums of consecutive cubed integers equal to squared integers</a>, arXiv:1501.06098 [math.NT], 2015
%H A253680 R. J. Stroeker, <a href="http://www.numdam.org/item?id=CM_1995__97_1-2_295_0">On the sum of consecutive cubes being a perfect square</a>, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
%H A253680 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F A253680 c(n) = 2n(n+1)*(2n+1)*(8n*(n+1)+1).
%F A253680 G.f.: 12*x*(x+1)*(17*x^2+126*x+17) / (x-1)^6. - _Colin Barker_, Jan 09 2015
%e A253680 For n=1, M(n)=3, b(n)=23, c(n)=204.
%e A253680 See "File Triplets (M,b,c) for M=(2n+1)" link.
%p A253680 restart: for n from 1 to 50000 do c:=2*n*(n+1)*(2*n+1)*(8*n*(n+1)+1): print (c); end do:
%t A253680 f[n_] := 2 n (n + 1) (2 n + 1) (8 n (n + 1) + 1); Array[f, 36] (* _Michael De Vlieger_, Jan 10 2015 *)
%o A253680 (PARI) Vec(12*x*(x+1)*(17*x^2+126*x+17)/(x-1)^6 + O(x^100)) \\ _Colin Barker_, Jan 09 2015
%o A253680 (Magma) [2*n*(n+1)*(2*n+1)*(8*n*(n+1)+1): n in [1..30]]; // _Vincenzo Librandi_, Feb 19 2015
%Y A253680 Cf. A116108, A116145, A126200, A126203, A163392, A163393, A253679, A253681.
%K A253680 nonn,easy
%O A253680 1,1
%A A253680 _Vladimir Pletser_, Jan 08 2015