cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253707 Numbers M(n) which are the number of terms in the sums of consecutive cubed integers equaling a squared integer, b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, for a first term b(n) being an odd squared integer (A016754).

This page as a plain text file.
%I A253707 #45 Sep 08 2022 08:46:10
%S A253707 17,98,291,644,1205,2022,3143,4616,6489,8810,11627,14988,18941,23534,
%T A253707 28815,34832,41633,49266,57779,67220,77637,89078,101591,115224,130025,
%U A253707 146042,163323,181916,201869,223230,246047,270368,296241,323714,352835,383652,416213
%N A253707 Numbers M(n) which are the number of terms in the sums of consecutive cubed integers equaling a squared integer, b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, for a first term b(n) being an odd squared integer (A016754).
%C A253707 Numbers M(n) such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers for b(n) being an odd squared integer (A016754).
%C A253707 To every odd squared integer b corresponds a sum of a consecutive cubed integers starting at b having at least one nontrivial solution. For n>=1, b(n)= (2n+1)^2 (A016754), M(n) = (sqrt(b)-1) (2b-1)/2 = n(8n(n+1)+1) (this sequence),  and c(n)= (b-1)(4b^2-1)/8 = (n (n+1)/2)(4(2n+1)^4-1) (A253708).
%C A253707 The trivial solutions with M < 1 and b < 2 are not considered here.
%H A253707 Vladimir Pletser, <a href="/A253707/b253707.txt">Table of n, a(n) for n = 1..50000</a>
%H A253707 Vladimir Pletser, <a href="/A253707/a253707_1.txt">File Triplets (M,b,c) for a=(2n+1)^2</a>
%H A253707 Vladimir Pletser, <a href="http://www.researchgate.net/profile/Vladimir_Pletser/publication/271272786">Number of terms, first term and square root of sums of consecutive cubed integers equal to integer squares</a>, Research Gate, 2015.
%H A253707 Vladimir Pletser, <a href="http://arxiv.org/abs/1501.06098">General solutions of sums of consecutive cubed integers equal to squared integers</a>, arXiv:1501.06098 [math.NT], 2015.
%H A253707 R. J. Stroeker, <a href="http://www.numdam.org/item?id=CM_1995__97_1-2_295_0">On the sum of consecutive cubes being a perfect square</a>, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
%H A253707 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A253707 a(n) = n(8n(n+1)+1).
%F A253707 a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - _Colin Barker_, Jan 10 2015
%F A253707 G.f.: x*(x^2+30*x+17) / (x-1)^4. - _Colin Barker_, Jan 10 2015
%e A253707 For n=1, b(n)=9, M(n)=17, c(n)=323 (see File Triplets link).
%p A253707 restart: for n from 1 to 50000 do a:= n*(8*n*(n+1)+1): print (a); end do:
%t A253707 f[n_] := n*(8 n (n + 1) + 1); Array[f, 52] (* _Michael De Vlieger_, Jan 10 2015 *)
%t A253707 LinearRecurrence[{4,-6,4,-1},{17,98,291,644},40] (* _Harvey P. Dale_, Jul 31 2018 *)
%o A253707 (PARI) Vec(x*(x^2+30*x+17)/(x-1)^4 + O(x^100)) \\ _Colin Barker_, Jan 10 2015
%o A253707 (Magma) [n*(8*n*(n+1)+1): n in [1..40]]; // _Vincenzo Librandi_, Feb 19 2015
%Y A253707 Cf. A116108, A116145, A126200, A126203, A163392, A163393, A253680, A253681, A253708, A253709.
%K A253707 nonn,easy
%O A253707 1,1
%A A253707 _Vladimir Pletser_, Jan 09 2015