This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253707 #45 Sep 08 2022 08:46:10 %S A253707 17,98,291,644,1205,2022,3143,4616,6489,8810,11627,14988,18941,23534, %T A253707 28815,34832,41633,49266,57779,67220,77637,89078,101591,115224,130025, %U A253707 146042,163323,181916,201869,223230,246047,270368,296241,323714,352835,383652,416213 %N A253707 Numbers M(n) which are the number of terms in the sums of consecutive cubed integers equaling a squared integer, b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, for a first term b(n) being an odd squared integer (A016754). %C A253707 Numbers M(n) such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers for b(n) being an odd squared integer (A016754). %C A253707 To every odd squared integer b corresponds a sum of a consecutive cubed integers starting at b having at least one nontrivial solution. For n>=1, b(n)= (2n+1)^2 (A016754), M(n) = (sqrt(b)-1) (2b-1)/2 = n(8n(n+1)+1) (this sequence), and c(n)= (b-1)(4b^2-1)/8 = (n (n+1)/2)(4(2n+1)^4-1) (A253708). %C A253707 The trivial solutions with M < 1 and b < 2 are not considered here. %H A253707 Vladimir Pletser, <a href="/A253707/b253707.txt">Table of n, a(n) for n = 1..50000</a> %H A253707 Vladimir Pletser, <a href="/A253707/a253707_1.txt">File Triplets (M,b,c) for a=(2n+1)^2</a> %H A253707 Vladimir Pletser, <a href="http://www.researchgate.net/profile/Vladimir_Pletser/publication/271272786">Number of terms, first term and square root of sums of consecutive cubed integers equal to integer squares</a>, Research Gate, 2015. %H A253707 Vladimir Pletser, <a href="http://arxiv.org/abs/1501.06098">General solutions of sums of consecutive cubed integers equal to squared integers</a>, arXiv:1501.06098 [math.NT], 2015. %H A253707 R. J. Stroeker, <a href="http://www.numdam.org/item?id=CM_1995__97_1-2_295_0">On the sum of consecutive cubes being a perfect square</a>, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307. %H A253707 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A253707 a(n) = n(8n(n+1)+1). %F A253707 a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - _Colin Barker_, Jan 10 2015 %F A253707 G.f.: x*(x^2+30*x+17) / (x-1)^4. - _Colin Barker_, Jan 10 2015 %e A253707 For n=1, b(n)=9, M(n)=17, c(n)=323 (see File Triplets link). %p A253707 restart: for n from 1 to 50000 do a:= n*(8*n*(n+1)+1): print (a); end do: %t A253707 f[n_] := n*(8 n (n + 1) + 1); Array[f, 52] (* _Michael De Vlieger_, Jan 10 2015 *) %t A253707 LinearRecurrence[{4,-6,4,-1},{17,98,291,644},40] (* _Harvey P. Dale_, Jul 31 2018 *) %o A253707 (PARI) Vec(x*(x^2+30*x+17)/(x-1)^4 + O(x^100)) \\ _Colin Barker_, Jan 10 2015 %o A253707 (Magma) [n*(8*n*(n+1)+1): n in [1..40]]; // _Vincenzo Librandi_, Feb 19 2015 %Y A253707 Cf. A116108, A116145, A126200, A126203, A163392, A163393, A253680, A253681, A253708, A253709. %K A253707 nonn,easy %O A253707 1,1 %A A253707 _Vladimir Pletser_, Jan 09 2015