This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253721 #23 Aug 17 2024 01:33:25 %S A253721 8,2,8,0,7,8,0,2,4,5,0,2,3,6,8,0,5,6,8,2,8,9,2,5,0,4,6,7,4,5,0,8,7,8, %T A253721 3,4,4,5,0,1,2,4,5,2,6,8,0,5,7,2,2,0,1,6,8,2,4,5,6,5,8,1,6,8,3,5,9,2, %U A253721 4,5,6,0,2,0,6,8,2,5,2,3,8,3,5,4,6,7 %N A253721 Triprimes modulo 10. %C A253721 Last digit of triprimes (A014612). %H A253721 Reinhard Zumkeller, <a href="/A253721/b253721.txt">Table of n, a(n) for n = 1..10000</a> %H A253721 <a href="/index/Fi#final">Index entries for sequences related to final digits of numbers</a> %F A253721 a(n) = A010879(A014612(n)). - _Michel Marcus_, May 03 2015 %p A253721 with(numtheory): A253721:=n->`if`(bigomega(n) = 3, n mod 10, NULL): seq(A253721(n), n=1..500); %t A253721 Mod[#, 10] & /@ Select[Range[500], PrimeOmega[#] == 3 &] %o A253721 (Haskell) %o A253721 a253721 = flip mod 10 . a014612 -- _Reinhard Zumkeller_, May 05 2015 %o A253721 (PARI) do(x)=my(v=List(), t); forprime(p=2, x\4, forprime(q=2, min(x\(2*p), p), t=p*q; forprime(r=2, min(x\t, q), listput(v, t*r)))); Set(v)%10 \\ _Charles R Greathouse IV_, Aug 30 2017 %o A253721 (Python) %o A253721 from math import isqrt %o A253721 from sympy import primepi, primerange, integer_nthroot %o A253721 def A253721(n): %o A253721 def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(x//k)+1),a))) %o A253721 m, k = n, f(n) %o A253721 while m != k: %o A253721 m, k = k, f(k) %o A253721 return m%10 # _Chai Wah Wu_, Aug 17 2024 %Y A253721 Cf. A010879 (final digit of n), A014612 (triprimes). %Y A253721 Cf. A007652 (primes mod 10), A106146 (semiprimes mod 10). %Y A253721 Cf. A255646 (subsequence). %K A253721 nonn,base,easy %O A253721 1,1 %A A253721 _Wesley Ivan Hurt_, May 02 2015