cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253779 Numbers c whose cubes are equal to the sum of m^3 consecutive cubes for m^3 not divisible by 3 (A118719).

Original entry on oeis.org

0, 6, 180, 540, 2856, 5544, 16830, 27060, 62244, 90090, 175440, 237456, 413820, 534660, 860706, 1074744, 1630200, 1983150, 2872044, 3422580, 4776480, 5597856, 7579110, 8760780, 11565756, 13214994, 17077320, 19320840, 24514644, 27500220, 34343370, 38241456, 47098800
Offset: 1

Views

Author

Vladimir Pletser, Jan 12 2015

Keywords

Comments

Numbers c such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^3 has nontrivial solutions over the integers for M equal to a cube not divisible by 3 (A118719).
If M is a cube not divisible by 3, there always exists at least one nontrivial solution for the sum of M consecutive cubes starting from b^3 and equaling a cube c^3.
There are no nontrivial solutions for M=m^3 if m=0(mod 3).
For n>=1, for integers m(n)=A001651(n), all nontrivial solutions for M(n)= m^3 =A118719(n+1) are b(n) =(m-1)(m^2 (m-2)-4(m+1))/6 and c(n)= m(m^2-1)(m^2+2)/6.

Examples

			For n=1, b(1)= 0 and a(1)= 0 for M(1)=1= A118719(n+1) = 1^3= (A001651(n))^3.
For n=2, b(2)=-2 and a(2)=6 for M(2)=8= A118719(n+1) = 2^3= (A001651(n))^3 , which is Euler relation: (-2)^3 + (-1)^3 + 0^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 6^3.
For n=3, b(3)=6 and a(3)=180 for M(3)=64= A118719(n+1) = 4^3= (A001651(n))^3.
See "File Triplets (M,a,c) for M=m^3" link, [where in this File, M is the number of term, a the first term and c the square root of the sum].
		

Crossrefs

Programs

  • Maple
    restart: for n from 1 to 15000 do m:=n: if(modp(m,3)>0) then c:=m*(m^2-1)*(m^2+2))/6: print (c): fi: od:

Formula

a(n) = m(m^2-1)(m^2+2)/6 where m = A001651(n).
Conjectures from Colin Barker, Jan 13 2015: (Start)
a(n) = (81*n^5 - 270*n^4 + 396*n^3 - 312*n^2 + 96*n) / 64 for n even.
a(n) = (81*n^5 - 135*n^4 + 126*n^3 - 66*n^2 - 15*n + 9) / 64 for n odd.
G.f.: 6*x^2*(x^8+29*x^7+55*x^6+241*x^5+158*x^4+241*x^3+55*x^2+29*x+1) / ((x-1)^6*(x+1)^5).
(End)