cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253803 a(n) gives one fourth of the even leg of one of the two Pythagorean triangles with hypotenuse A080109(n) = A002144(n)^2. The odd leg is given in A253802(n).

Original entry on oeis.org

6, 39, 60, 210, 210, 410, 630, 915, 1320, 1780, 2340, 990, 2730, 3164, 4620, 5215, 5610, 4290, 8145, 8106, 2730, 6630, 12116, 12540, 4080, 17485, 17451, 18480, 9690, 24414
Offset: 1

Views

Author

Wolfdieter Lang, Jan 14 2015

Keywords

Comments

See A253802 for comments and the Dickson reference.

Examples

			n = 7: A080175(7) = 7890481 = 53^4 = 2809^2; A002144(7)^4 = A253802(7)^2 + (4*a(7))^2 = 1241^2 + (4*630)^2.
The other Pythagorean triangle with hypotenuse
53^2 = 2809 has odd leg A253804(7) = 2385 and even leg 4*A253305(7) = 4*371 = 1484: 53^4 = 2385^2 + (4*371)^2.
		

References

  • L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.

Crossrefs

Formula

a(n) = sqrt(A080109(n)^2 - A253802(n)^2)/4, n >= 1.