This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253806 #8 Jan 16 2015 15:46:24 %S A253806 8,5,14,18,9,24,14,15,38,20,44,48,54,29,30,68,35,74,39,84,44,98,50, %T A253806 104,108,54,114,128,65,138,69,74,75,158,164,168,174 %N A253806 One half of the maximal values of the length of the period for Fibonacci numbers modulo p (A001175(p)) for primes p > 5, according to Wall's Theorems 6 and 7. %H A253806 D. D. Wall, <a href="http://www.jstor.org/stable/2309169">Fibonacci series modulo m</a>, Amer. Math. Monthly, 67 (1960), 525-532. %F A253806 a(n) = (prime(n+3) - 1)/2 if prime(n+3) == 1 or 9 (mod 10) and a(n) = (prime(n+3) + 1) if %F A253806 prime(n+3) == 3 or 7 (mod 10), n >= 1. %e A253806 a(1) = 8 = 7 + 1 because prime(4) = 7 == 7 (mod 10). The length of the period for 7 is 2*8 = 16 = A001175(7). %e A253806 a(2) = 5 = (11 - 1)/2 because prime(4) = 11 = 1 (mod 10). The length of the period for 11 is 10 = A001175(11). %Y A253806 Cf. A001175, A222413, A222414. %K A253806 nonn,easy %O A253806 1,1 %A A253806 _Wolfdieter Lang_, Jan 16 2015