cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253809 Array of pairs (x,y) of Markoff triples (x,y,z) with x <= y <= z, for z given in A002559.

This page as a plain text file.
%I A253809 #12 Jan 22 2020 07:16:25
%S A253809 1,1,1,1,1,2,1,5,2,5,1,13,1,34,2,29,5,13,1,89,5,29,1,233,2,169,13,34,
%T A253809 1,610,5,194,1,1597,2,985,5,433,13,194,34,89,1,4181,29,169,1,10946,2,
%U A253809 5741,29,433,5,2897,13,1325,89,233,1,28657
%N A253809 Array of pairs (x,y) of Markoff triples (x,y,z) with x <= y <= z, for z given in A002559.
%C A253809 Frobenius' conjecture on Markoff triples is that the maximal member z of the triple of positive integers (x,y,z), satisfying  x^2 + y^2 + z^2 - 3*x*y*z = 0, with x <= y <= z, determines x and y uniquely. Also, each entry from A002559 (Markoff numbers) is conjectured to appear as a maximal member z. If an entry A002559(n) should not appear as z then one puts z(n) = 0 and row n will be 0, 0.
%C A253809 If this Frobenius conjecture is true then the row length of this array is always 2, and only positive numbers appear.
%D A253809 R. A. Mollin, Advanced Number Theory with Applications, Chapman & Hall/CRC, Boca Raton, 2010, 123-125.
%D A253809 See also A002559.
%H A253809 Feng-Juan Chen and Yong-Gao Chen, <a href="https://doi.org/10.1016/j.jnt.2012.12.018">On the Frobenius conjecture for Markoff numbers</a>, J. Number Theory 133 (2013) 2363-2373.
%H A253809 Don Zagier, <a href="http://people.mpim-bonn.mpg.de/zagier/files/doi/10.2307/2007348/fulltext.pdf">On the number of Markoff numbers below a given bound</a>, Mathematics of Computation 39:160 (1982), pp. 709-723.
%H A253809 See also A002559.
%e A253809 The array A(n,k) begins:
%e A253809 If the Frobenius conjecture is true there will only be one pair x(1,n), y(1,n) for each z(n).
%e A253809 n     z(n) \  k=1: x(1,n)  k=2: y(1,n) ...
%e A253809 1       1:      1            1
%e A253809 2       2:      1            1
%e A253809 3       5:      1            2
%e A253809 4      13:      1            5
%e A253809 5      29:      2            5
%e A253809 6      34:      1           13
%e A253809 7      89:      1           34
%e A253809 8     169:      2           29
%e A253809 9     194:      5           13
%e A253809 10    233:      1           89
%e A253809 11    433:      5           29
%e A253809 12    610:      1          233
%e A253809 13    985:      2          169
%e A253809 14   1325:     13           34
%e A253809 15   1597:      1          610
%e A253809 16   2897:      5          194
%e A253809 17   4181:      1         1597
%e A253809 18   5741:      2          985
%e A253809 19   6466:      5          433
%e A253809 20   7561:     13          194
%e A253809 21   9077:     34           89
%e A253809 22  10946:      1         4181
%e A253809 23  14701:     29          169
%e A253809 24  28657:      1        10946
%e A253809 25  33461:      2         5741
%e A253809 26  37666:     29          433
%e A253809 27  43261:      5         2897
%e A253809 28  51641:     13         1325
%e A253809 29  62210:     89          233
%e A253809 30  75025:      1        28657
%e A253809 ...
%Y A253809 Cf. A002559.
%K A253809 nonn,tabf
%O A253809 1,6
%A A253809 _Wolfdieter Lang_, Jan 28 2015