This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253828 #19 Oct 24 2021 16:47:42 %S A253828 3,1,4,1,1953125,81,64,7776,125,243,390625,134217728,4782969,40353607, %T A253828 729,9,8,6561,4096,4096,36,64,1296,64,27,6561,512,9,128,40353607, %U A253828 59049,1,0,256,16777216,4096,4,1,4782969,7,1,10077696,729,19683,387420489,729,2187 %N A253828 Digit of Pi raised to the power of the next digit of Pi. %C A253828 From _Felix Fröhlich_, Sep 23 2019: (Start) %C A253828 The convention 0^0 = 1 was applied in computing the terms. %C A253828 There are 61 values that can occur in this sequence, namely all numbers of the form x^y for some 0 <= x, y <= 9. (End) %H A253828 Felix Fröhlich, <a href="/A253828/b253828.txt">Table of n, a(n) for n = 1..10000</a> %F A253828 a(n) = A000796(n)^A000796(n+1). - _Felix Fröhlich_, Sep 23 2019 %t A253828 Module[{nn=1000,pidg},pidg=Partition[RealDigits[Pi,10,nn][[1]],2,1];If[ # == {0,0},1,#[[1]]^#[[2]]]&/@pidg] (* _Harvey P. Dale_, Oct 24 2021 *) %o A253828 (PARI) pistring(n) = default(realprecision, n+10); my(x=Pi); floor(x*10^n) %o A253828 pidigit(n) = pistring(n)-10*pistring(n-1) %o A253828 a(n) = pidigit(n-1)^pidigit(n) \\ _Felix Fröhlich_, Sep 23 2019 %Y A253828 Cf. A000796. %K A253828 nonn,base,dumb,easy %O A253828 1,1 %A A253828 _Jonathan PP Martin_, Jan 16 2015 %E A253828 More terms from _Felix Fröhlich_, Sep 23 2019