cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253828 Digit of Pi raised to the power of the next digit of Pi.

This page as a plain text file.
%I A253828 #19 Oct 24 2021 16:47:42
%S A253828 3,1,4,1,1953125,81,64,7776,125,243,390625,134217728,4782969,40353607,
%T A253828 729,9,8,6561,4096,4096,36,64,1296,64,27,6561,512,9,128,40353607,
%U A253828 59049,1,0,256,16777216,4096,4,1,4782969,7,1,10077696,729,19683,387420489,729,2187
%N A253828 Digit of Pi raised to the power of the next digit of Pi.
%C A253828 From _Felix Fröhlich_, Sep 23 2019: (Start)
%C A253828 The convention 0^0 = 1 was applied in computing the terms.
%C A253828 There are 61 values that can occur in this sequence, namely all numbers of the form x^y for some 0 <= x, y <= 9. (End)
%H A253828 Felix Fröhlich, <a href="/A253828/b253828.txt">Table of n, a(n) for n = 1..10000</a>
%F A253828 a(n) = A000796(n)^A000796(n+1). - _Felix Fröhlich_, Sep 23 2019
%t A253828 Module[{nn=1000,pidg},pidg=Partition[RealDigits[Pi,10,nn][[1]],2,1];If[ # == {0,0},1,#[[1]]^#[[2]]]&/@pidg] (* _Harvey P. Dale_, Oct 24 2021 *)
%o A253828 (PARI) pistring(n) = default(realprecision, n+10); my(x=Pi); floor(x*10^n)
%o A253828 pidigit(n) = pistring(n)-10*pistring(n-1)
%o A253828 a(n) = pidigit(n-1)^pidigit(n) \\ _Felix Fröhlich_, Sep 23 2019
%Y A253828 Cf. A000796.
%K A253828 nonn,base,dumb,easy
%O A253828 1,1
%A A253828 _Jonathan PP Martin_, Jan 16 2015
%E A253828 More terms from _Felix Fröhlich_, Sep 23 2019