This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253878 #12 Sep 10 2022 11:49:52 %S A253878 1,22,358,5713,91057,1451206,23128246,368600737,5874483553, %T A253878 93623136118,1492095694342,23779907973361,378986431879441, %U A253878 6040003002097702,96261061601683798,1534136982624843073,24449930660395805377,389664753583708042966,6210186126678932882086 %N A253878 Indices of triangular numbers (A000217) which are also centered heptagonal numbers (A069099). %C A253878 Also positive integers x in the solutions to x^2 - 7*y^2 + x + 7*y - 2 = 0, the corresponding values of y being A253879. %H A253878 Colin Barker, <a href="/A253878/b253878.txt">Table of n, a(n) for n = 1..832</a> %H A253878 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (17,-17,1). %F A253878 a(n) = 17*a(n-1)-17*a(n-2)+a(n-3). %F A253878 G.f.: -x*(x^2+5*x+1) / ((x-1)*(x^2-16*x+1)). %F A253878 a(n) = (-2+(8-3*sqrt(7))^n*(3+sqrt(7))-(-3+sqrt(7))*(8+3*sqrt(7))^n)/4. - _Colin Barker_, Mar 04 2016 %e A253878 22 is in the sequence because the 22nd triangular number is 253, which is also the 9th centered heptagonal number. %t A253878 LinearRecurrence[{17,-17,1},{1,22,358},20] (* _Harvey P. Dale_, Sep 10 2022 *) %o A253878 (PARI) Vec(-x*(x^2+5*x+1)/((x-1)*(x^2-16*x+1)) + O(x^100)) %Y A253878 Cf. A000217, A069099, A253879, A253880. %K A253878 nonn,easy %O A253878 1,2 %A A253878 _Colin Barker_, Jan 17 2015