cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253878 Indices of triangular numbers (A000217) which are also centered heptagonal numbers (A069099).

This page as a plain text file.
%I A253878 #12 Sep 10 2022 11:49:52
%S A253878 1,22,358,5713,91057,1451206,23128246,368600737,5874483553,
%T A253878 93623136118,1492095694342,23779907973361,378986431879441,
%U A253878 6040003002097702,96261061601683798,1534136982624843073,24449930660395805377,389664753583708042966,6210186126678932882086
%N A253878 Indices of triangular numbers (A000217) which are also centered heptagonal numbers (A069099).
%C A253878 Also positive integers x in the solutions to x^2 - 7*y^2 + x + 7*y - 2 = 0, the corresponding values of y being A253879.
%H A253878 Colin Barker, <a href="/A253878/b253878.txt">Table of n, a(n) for n = 1..832</a>
%H A253878 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (17,-17,1).
%F A253878 a(n) = 17*a(n-1)-17*a(n-2)+a(n-3).
%F A253878 G.f.: -x*(x^2+5*x+1) / ((x-1)*(x^2-16*x+1)).
%F A253878 a(n) = (-2+(8-3*sqrt(7))^n*(3+sqrt(7))-(-3+sqrt(7))*(8+3*sqrt(7))^n)/4. - _Colin Barker_, Mar 04 2016
%e A253878 22 is in the sequence because the 22nd triangular number is 253, which is also the 9th centered heptagonal number.
%t A253878 LinearRecurrence[{17,-17,1},{1,22,358},20] (* _Harvey P. Dale_, Sep 10 2022 *)
%o A253878 (PARI) Vec(-x*(x^2+5*x+1)/((x-1)*(x^2-16*x+1)) + O(x^100))
%Y A253878 Cf. A000217, A069099, A253879, A253880.
%K A253878 nonn,easy
%O A253878 1,2
%A A253878 _Colin Barker_, Jan 17 2015