cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253879 Indices of centered heptagonal numbers (A069099) which are also triangular numbers (A000217).

This page as a plain text file.
%I A253879 #9 Mar 04 2016 08:31:26
%S A253879 1,9,136,2160,34417,548505,8741656,139317984,2220346081,35386219305,
%T A253879 563959162792,8987960385360,143243407002961,2282906551662009,
%U A253879 36383261419589176,579849276161764800,9241205157168647617,147279433238536597065,2347229726659416905416
%N A253879 Indices of centered heptagonal numbers (A069099) which are also triangular numbers (A000217).
%C A253879 Also positive integers y in the solutions to x^2 - 7*y^2 + x + 7*y - 2 = 0, the corresponding values of x being A253878.
%H A253879 Colin Barker, <a href="/A253879/b253879.txt">Table of n, a(n) for n = 1..832</a>
%H A253879 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (17,-17,1).
%F A253879 a(n) = 17*a(n-1)-17*a(n-2)+a(n-3).
%F A253879 G.f.: x*(8*x-1) / ((x-1)*(x^2-16*x+1)).
%F A253879 a(n) = (14-(8-3*sqrt(7))^n*(7+3*sqrt(7))+(-7+3*sqrt(7))*(8+3*sqrt(7))^n)/28. - _Colin Barker_, Mar 04 2016
%e A253879 9 is in the sequence because the 9th centered heptagonal number is 253, which is also the 22nd triangular number.
%o A253879 (PARI) Vec(x*(8*x-1)/((x-1)*(x^2-16*x+1)) + O(x^100))
%Y A253879 Cf. A000217, A069099, A253878, A253880.
%K A253879 nonn,easy
%O A253879 1,2
%A A253879 _Colin Barker_, Jan 17 2015