A253896 Total number of either concave decagons or concave hexadecagons in two variants of an octagon expansion after n iterations: either "side-to-side" or "vertex-to-vertex", respectively.
0, 0, 0, 1, 3, 7, 13, 22, 34, 48, 62, 81, 99, 121, 143, 170, 196, 226, 256, 291, 325, 363, 401, 444, 486, 532, 578, 629, 679, 733, 787, 846, 904, 966, 1028, 1095, 1161, 1231, 1301, 1376, 1450, 1528, 1606, 1689, 1771, 1857, 1943, 2034, 2124, 2218, 2312, 2411, 2509, 2611
Offset: 1
Keywords
Links
- Kival Ngaokrajang, Illustration of initial terms, Rare type polygons
Crossrefs
Cf. A253895, A061777 (Triangle expansion, vertex-to-vertex, 3 vertices), A179178 (Triangle expansion, side-to-side, 2 sides), A253687 (Pentagon expansion, side-to-side, 2 consecutive sides and 1 isolated side), A253688 (Pentagon expansion, vertex-to-vertex, 2 consecutive vertices and 1 isolated vertex), A253547 (Hexagon expansion, vertex-to-vertex, 2 vertices separated by 1 vertex).
Programs
-
PARI
{ a=0;d1=0;p=1;print1("0, 0, 0, ",p,", ");\\8s2a1 for(n=2,100, if(n<5,d1=2, if(n<7,d1=3, if(n<8,d1=2, if(Mod(n,4)==0,d1=0, if(Mod(n,4)==1,d1=5, if(Mod(n,4)==2,d1=-1,d1=4 ) ) ) ) ) ); a=a+d1;p=p+a; print1(p,", ") ) }
Formula
Empirical g.f.: -x^4*(2*x^10 -4*x^9 +2*x^8 -2*x^7 +2*x^5 +2*x^4 +2*x^3 +2*x^2 +x +1) / ((x -1)^3*(x +1)*(x^2 +1)). - Colin Barker, Jan 17 2015
Comments