cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253920 Indices of centered octagonal numbers (A016754) which are also heptagonal numbers (A000566).

This page as a plain text file.
%I A253920 #13 Sep 08 2022 08:46:11
%S A253920 1,5,39,760,6494,55518,1095199,9363623,80056197,1579275478,
%T A253920 13502337152,115440979836,2277314143357,19470360808841,
%U A253920 166465812866595,3283885415444596,28076246784010850,240043586712649434,4735360491756963355,40485928392182836139
%N A253920 Indices of centered octagonal numbers (A016754) which are also heptagonal numbers (A000566).
%C A253920 Also positive integers y in the solutions to 5*x^2 - 8*y^2 - 3*x + 8*y - 2 = 0, the corresponding values of x being A046195.
%H A253920 Colin Barker, <a href="/A253920/b253920.txt">Table of n, a(n) for n = 1..950</a>
%H A253920 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1442,-1442,0,-1,1).
%F A253920 a(n) = a(n-1)+1442*a(n-3)-1442*a(n-4)-a(n-6)+a(n-7).
%F A253920 G.f.: x*(4*x^5+34*x^4+721*x^3-34*x^2-4*x-1) / ((x-1)*(x^6-1442*x^3+1)).
%e A253920 5 is in the sequence because the 5th centered octagonal number is 81, which is also the 6th heptagonal number.
%t A253920 CoefficientList[Series[(4 x^5 + 34 x^4 + 721 x^3 - 34 x^2 -4 x - 1)/((x-1) (x^6 - 1442 x^3 + 1)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Jan 20 2015 *)
%t A253920 LinearRecurrence[{1,0,1442,-1442,0,-1,1},{1,5,39,760,6494,55518,1095199},20] (* _Harvey P. Dale_, Jul 04 2017 *)
%o A253920 (PARI) Vec(x*(4*x^5+34*x^4+721*x^3-34*x^2-4*x-1)/((x-1)*(x^6-1442*x^3+1)) + O(x^100))
%o A253920 (Magma) I:=[1,5,39,760,6494,55518,1095199]; [n le 7 select I[n] else Self(n-1)+1442*Self(n-3)-1442*Self(n-4)-Self(n-6)+Self(n-7): n in [1..25]]; // _Vincenzo Librandi_, Jan 20 2015
%Y A253920 Cf. A000566, A016754, A046195, A036354.
%K A253920 nonn,easy
%O A253920 1,2
%A A253920 _Colin Barker_, Jan 19 2015
%E A253920 Corrected by _Vincenzo Librandi_, Jan 20 2015