cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253921 Indices of octagonal numbers (A000567) which are also centered pentagonal numbers (A005891).

This page as a plain text file.
%I A253921 #12 Sep 08 2022 08:46:11
%S A253921 1,51,271,24421,130461,11770711,62881771,5673458121,30308883001,
%T A253921 2734595043451,14608818724551,1318069137485101,7041420316350421,
%U A253921 635306589672775071,3393949983662178211,306216458153140098961,1635876850704853547121,147595697523223854923971
%N A253921 Indices of octagonal numbers (A000567) which are also centered pentagonal numbers (A005891).
%C A253921 Also positive integers x in the solutions to 6*x^2 - 5*y^2 - 4*x + 5*y - 2 = 0, the corresponding values of y being A253922.
%H A253921 Colin Barker, <a href="/A253921/b253921.txt">Table of n, a(n) for n = 1..745</a>
%H A253921 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,482,-482,-1,1).
%F A253921 a(n) = a(n-1)+482*a(n-2)-482*a(n-3)-a(n-4)+a(n-5).
%F A253921 G.f.: -x*(x^4+50*x^3-262*x^2+50*x+1) / ((x-1)*(x^2-22*x+1)*(x^2+22*x+1)).
%e A253921 51 is in the sequence because the 51st octagonal number is 7701, which is also the 56th centered pentagonal number.
%t A253921 CoefficientList[Series[(x^4 + 50 x^3 - 262 x^2 + 50 x + 1)/((1 - x) (x^2 - 22 x + 1) (x^2 + 22 x + 1)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Jan 20 2015 *)
%o A253921 (PARI) Vec(-x*(x^4+50*x^3-262*x^2+50*x+1)/((x-1)*(x^2-22*x+1)*(x^2+22*x+1)) + O(x^100))
%o A253921 (Magma) I:=[1,51,271,24421,130461]; [n le 5 select I[n] else Self(n-1)+482*Self(n-2)-482*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // _Vincenzo Librandi_, Jan 20 2015
%Y A253921 Cf. A000567, A005891, A253922, A253923.
%K A253921 nonn,easy
%O A253921 1,2
%A A253921 _Colin Barker_, Jan 19 2015