cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253939 Primes p such that (p^2 + 5)/6, (p^4 + 5)/6 and (p^6 + 5)/6 are prime.

This page as a plain text file.
%I A253939 #14 Sep 08 2022 08:46:11
%S A253939 7309,45361,67103,97777,128521,149381,374669,543313,656459,872747,
%T A253939 940913,1110817,1219877,1288603,1324567,1599319,1629809,2006677,
%U A253939 2129527,2495501,2544121,2735839,2763053,2786363,2856167,3145661,3428839,3585149,4063877,4115971
%N A253939 Primes p such that (p^2 + 5)/6, (p^4 + 5)/6 and (p^6 + 5)/6 are prime.
%H A253939 R. J. Mathar, <a href="/A253939/b253939.txt">Table of n, a(n) for n = 1..125</a>
%t A253939 Select[Prime[Range[10^7]], PrimeQ[(#^2 + 5) / 6] &&PrimeQ[(#^4 + 5) / 6] &&PrimeQ[(#^6 + 5) / 6] &] (* _Vincenzo Librandi_, Jan 21 2015 *)
%t A253939 Select[Prime[Range[3*10^5]],AllTrue[(#^{2,4,6}+5)/6,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Mar 10 2016 *)
%o A253939 (Magma) [p: p in PrimesUpTo(10^7) | IsPrime((p^2+5) div 6) and IsPrime((p^4+5) div 6) and IsPrime((p^6+5) div 6)]; // _Vincenzo Librandi_, Jan 21 2015
%Y A253939 Subsequence of A253925. Cf. A118915, A247478.
%K A253939 nonn
%O A253939 1,1
%A A253939 _Zak Seidov_, Jan 20 2015