This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253941 #30 May 22 2025 10:21:42 %S A253941 184279409,619338131,913749803,1057351301,1507289869,1600204213, %T A253941 2845213937,4725908767,4760956439,5374709801,5518707641,8724256757, %U A253941 9044067313,9387396269,10992352517,11937043567,13493126359,13593105793,17891702891,17897035213,17954907767,19690938161,20227580927,20922685813,21313027583,21717176851 %N A253941 Primes p such that (p^2 + 5)/6, (p^4 + 5)/6, (p^6 + 5)/6, (p^8 + 5)/6 and (p^10 + 5)/6 are all prime. %C A253941 The sequence contains all terms up to 10^10. There are no terms as yet for which (p^12 + 5)/6 is also prime. %C A253941 No terms < 10^11 with (p^12 + 5)/6 prime. - _Chai Wah Wu_, Jan 27 2015 %H A253941 Chai Wah Wu, <a href="/A253941/b253941.txt">Table of n, a(n) for n = 1..67</a> %o A253941 (Python) %o A253941 from gmpy2 import is_prime, t_divmod %o A253941 A253941_list = [] %o A253941 for p in range(1,10**6,2): %o A253941 if is_prime(p): %o A253941 p2, x = p**2, 1 %o A253941 for i in range(5): %o A253941 x *= p2 %o A253941 q, r = t_divmod(x+5,6) %o A253941 if r or not is_prime(q): %o A253941 break %o A253941 else: %o A253941 A253941_list.append(p) # _Chai Wah Wu_, Jan 22 2015 %o A253941 (PARI) lista(nn) = forprime(p=5, nn, if(ispseudoprime((p^2 + 5)/6) && ispseudoprime((p^4 + 5)/6) && ispseudoprime((p^6 + 5)/6) && ispseudoprime((p^8 + 5)/6) && ispseudoprime((p^10 + 5)/6), print1(p, ", "))); \\ _Jinyuan Wang_, Mar 01 2020 %Y A253941 Subsequence of A253976. %Y A253941 Cf. A118915, A247478, A253925, A253940. %K A253941 nonn %O A253941 1,1 %A A253941 _Zak Seidov_, Jan 20 2015 %E A253941 a(15)-a(26) from _Chai Wah Wu_, Jan 22 2015