cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253950 Number of finite, negative, totally ordered monoids of size n (semigroups with a neutral element that is also the top element).

This page as a plain text file.
%I A253950 #48 Aug 08 2024 11:06:40
%S A253950 1,1,2,8,44,308,2641,27120,332507,5035455
%N A253950 Number of finite, negative, totally ordered monoids of size n (semigroups with a neutral element that is also the top element).
%C A253950 The terms have been computed using the algorithm described in the referenced papers.
%H A253950 Eric Babson, Moon Duchin, Annina Iseli, Pietro Poggi-Corradini, Dylan Thurston, and Jamie Tucker-Foltz, <a href="https://arxiv.org/abs/2407.20226">Models of random spanning trees</a>, arXiv:2407.20226 [cs.DM], 2024. See p. 9.
%H A253950 M. Petrík, <a href="https://gitlab.com/petrikm/fntom">GitLab repository with an implementation of the algorithm in Python 3</a>
%H A253950 M. Petrík, <a href="https://gitlab.com/petrikm/fntom/-/blob/master/papers/Petrik__Habilitation_Thesis.pdf">Many-Valued Conjunctions</a>. Habilitation thesis, Czech Technical University in Prague, Faculty of Electrical Engineering, Prague, Czech Republic. Submitted in 2020. Available at <a href="https://dspace.cvut.cz/handle/10467/91539">Czech Technical University Digital Library</a>.
%H A253950 M. Petrík and Th. Vetterlein, <a href="https://gitlab.com/petrikm/fntom/-/blob/master/papers/Petrik_Vetterlein__Pomonoids__preprint.pdf">Rees coextensions of finite tomonoids and free pomonoids</a>. Semigroup Forum 99 (2019) 345-367. DOI: <a href="https://doi.org/10.1007/s00233-018-9972-z">10.1007/s00233-018-9972-z</a>.
%H A253950 M. Petrík and Th. Vetterlein, <a href="https://gitlab.com/petrikm/fntom/-/blob/master/papers/Petrik_Vetterlein__Coextensions__preprint.pdf">Rees coextensions of finite, negative tomonoids</a>. Journal of Logic and Computation 27 (2017) 337-356. DOI: <a href="https://doi.org/10.1093/logcom/exv047">10.1093/logcom/exv047</a>.
%H A253950 M. Petrík and Th. Vetterlein, <a href="https://gitlab.com/petrikm/fntom/-/blob/master/papers/Petrik_Vetterlein__IPMU_2016__preprint.pdf">Algorithm to generate finite negative totally ordered monoids</a>. In: IPMU 2016: 16th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Eindhoven, Netherlands, June 20-24, 2016.
%H A253950 M. Petrík and Th. Vetterlein, <a href="https://gitlab.com/petrikm/fntom/-/blob/master/papers/Petrik_Vetterlein__SCIS_ISIS_2014__preprint.pdf">Algorithm to generate the Archimedean, finite, negative tomonoids</a>. In: Joint 7th International Conference on Soft Computing and Intelligent Systems and 15th International Symposium on Advanced Intelligent Systems. Kitakyushu, Japan, Dec. 3-6, 2014. DOI: <a href="https://doi.org/10.1109/SCIS-ISIS.2014.7044822">10.1109/SCIS-ISIS.2014.7044822</a>.
%H A253950 <a href="/index/Mo#monoids">Index entries for sequences related to monoids</a>
%Y A253950 Cf. A058129, A030453, A253948, A253949, A374293.
%K A253950 nonn,hard,more
%O A253950 1,3
%A A253950 _Milan Petrík_, Jan 20 2015
%E A253950 a(10) from _Milan Petrík_, May 09 2021