cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253951 A partial double sum of integers: a(n) = Sum_{x=1..n} Sum_{y=1..n} T(x,y), where T is the matrix product: T = A051731*A127093*Transpose(A054524) and T(n,1)=0 (* stands for matrix multiplication).

Original entry on oeis.org

0, 1, 5, 9, 20, 23, 42, 52, 69, 77, 113, 119, 165, 177, 190, 214, 279, 291, 366, 379, 399, 422, 517, 533, 599, 625, 679, 701, 829, 846, 986, 1035, 1069, 1105, 1137, 1164, 1339, 1380, 1417, 1449, 1646, 1674, 1883, 1918, 1955, 2008, 2239, 2274, 2420, 2462, 2515, 2559, 2827, 2874, 2929
Offset: 1

Views

Author

Mats Granvik, Jan 20 2015

Keywords

Comments

a(n) ~ log(A003418(n))*n, based on the comment by Hans Havermann in A048272 referring to an argument by Gareth McCaughan.
The exact relation is: lim_{n->Infinity} log(A003418(k))*n = Sum_{x=1..n} Sum_{y=1..k} T(x,y), where T is the matrix product: T = A051731*A127093*Transpose(A054524) and T(n,1)=0.
Compare a(n) to round(log(A003418)*n)= 0, 1, 5, 10, 20, 25, 42, 54, 70, 78,...

Programs

  • Maple
    with(LinearAlgebra):
    N:= 200:
    A051731:= Matrix(N,N,(n,k) -> `if`(n mod k = 0, 1, 0),shape=triangular[lower]):
    A127093:= Matrix(N,N,(n,k) -> `if`(n mod k = 0, k, 0), shape=triangular[lower]):
    A054524T:= Matrix(N,N,(k,n) -> `if`(n mod k = 0, numtheory:-mobius(k),0), shape=triangular[upper]):
    T:= A051731 . A127093 . A054524T:
    a[1]:= 0:
    for n from 2 to N do
      a[n]:= a[n-1] + add(T[i,n],i=1..n) + add(T[n,j],j=2..n-1)
    od:
    seq(a[n],n=1..N); # Robert Israel, Jan 20 2015
  • Mathematica
    nn = 55;
    Z = Table[ If[ Mod[n, k] == 0, 1, 0], {n, nn}, {k, nn}];
    A = Table[ If[ Mod[n, k] == 0, k, 0], {n, nn}, {k, nn}];
    B = Table[ If[ Mod[n, k] == 0, MoebiusMu[k], 0], {n, nn}, {k, nn}];
    MatrixForm[T = Z.A.Transpose[B]];
    T[[All, 1]] = 0;
    a = Table[ Total[ T[[1 ;; n, 1 ;; n]], 2], {n, nn}]
    (* shows a graph *) Show[ ListLinePlot[a], ListLinePlot[ Accumulate[ MangoldtLambda[ Range[ nn]]]]]

Formula

a(n) = Sum_{x=1..n} Sum_{y=1..n} T(x,y), where T is the matrix product: T=A051731*A127093*Transpose(A054524) and T(n,1)=0. (* stands for matrix multiplication)