A253951 A partial double sum of integers: a(n) = Sum_{x=1..n} Sum_{y=1..n} T(x,y), where T is the matrix product: T = A051731*A127093*Transpose(A054524) and T(n,1)=0 (* stands for matrix multiplication).
0, 1, 5, 9, 20, 23, 42, 52, 69, 77, 113, 119, 165, 177, 190, 214, 279, 291, 366, 379, 399, 422, 517, 533, 599, 625, 679, 701, 829, 846, 986, 1035, 1069, 1105, 1137, 1164, 1339, 1380, 1417, 1449, 1646, 1674, 1883, 1918, 1955, 2008, 2239, 2274, 2420, 2462, 2515, 2559, 2827, 2874, 2929
Offset: 1
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1002
Programs
-
Maple
with(LinearAlgebra): N:= 200: A051731:= Matrix(N,N,(n,k) -> `if`(n mod k = 0, 1, 0),shape=triangular[lower]): A127093:= Matrix(N,N,(n,k) -> `if`(n mod k = 0, k, 0), shape=triangular[lower]): A054524T:= Matrix(N,N,(k,n) -> `if`(n mod k = 0, numtheory:-mobius(k),0), shape=triangular[upper]): T:= A051731 . A127093 . A054524T: a[1]:= 0: for n from 2 to N do a[n]:= a[n-1] + add(T[i,n],i=1..n) + add(T[n,j],j=2..n-1) od: seq(a[n],n=1..N); # Robert Israel, Jan 20 2015
-
Mathematica
nn = 55; Z = Table[ If[ Mod[n, k] == 0, 1, 0], {n, nn}, {k, nn}]; A = Table[ If[ Mod[n, k] == 0, k, 0], {n, nn}, {k, nn}]; B = Table[ If[ Mod[n, k] == 0, MoebiusMu[k], 0], {n, nn}, {k, nn}]; MatrixForm[T = Z.A.Transpose[B]]; T[[All, 1]] = 0; a = Table[ Total[ T[[1 ;; n, 1 ;; n]], 2], {n, nn}] (* shows a graph *) Show[ ListLinePlot[a], ListLinePlot[ Accumulate[ MangoldtLambda[ Range[ nn]]]]]
Comments